L(s) = 1 | + (0.951 − 0.309i)2-s + (0.809 − 0.587i)4-s + (0.891 + 0.453i)5-s + (0.587 − 0.809i)8-s + (−0.707 − 0.707i)9-s + (0.987 + 0.156i)10-s + (−1.70 − 0.133i)13-s + (0.309 − 0.951i)16-s + (−0.465 + 1.93i)17-s + (−0.891 − 0.453i)18-s + (0.987 − 0.156i)20-s + (0.587 + 0.809i)25-s + (−1.65 + 0.398i)26-s + (−0.652 − 0.399i)29-s − i·32-s + ⋯ |
L(s) = 1 | + (0.951 − 0.309i)2-s + (0.809 − 0.587i)4-s + (0.891 + 0.453i)5-s + (0.587 − 0.809i)8-s + (−0.707 − 0.707i)9-s + (0.987 + 0.156i)10-s + (−1.70 − 0.133i)13-s + (0.309 − 0.951i)16-s + (−0.465 + 1.93i)17-s + (−0.891 − 0.453i)18-s + (0.987 − 0.156i)20-s + (0.587 + 0.809i)25-s + (−1.65 + 0.398i)26-s + (−0.652 − 0.399i)29-s − i·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.884 + 0.466i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.884 + 0.466i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.764165935\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.764165935\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.951 + 0.309i)T \) |
| 5 | \( 1 + (-0.891 - 0.453i)T \) |
| 41 | \( 1 + (0.951 - 0.309i)T \) |
good | 3 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 7 | \( 1 + (0.156 + 0.987i)T^{2} \) |
| 11 | \( 1 + (0.891 + 0.453i)T^{2} \) |
| 13 | \( 1 + (1.70 + 0.133i)T + (0.987 + 0.156i)T^{2} \) |
| 17 | \( 1 + (0.465 - 1.93i)T + (-0.891 - 0.453i)T^{2} \) |
| 19 | \( 1 + (-0.156 - 0.987i)T^{2} \) |
| 23 | \( 1 + (0.587 + 0.809i)T^{2} \) |
| 29 | \( 1 + (0.652 + 0.399i)T + (0.453 + 0.891i)T^{2} \) |
| 31 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + (-1.16 - 0.183i)T + (0.951 + 0.309i)T^{2} \) |
| 43 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 47 | \( 1 + (-0.156 + 0.987i)T^{2} \) |
| 53 | \( 1 + (-1.26 + 0.303i)T + (0.891 - 0.453i)T^{2} \) |
| 59 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 + (0.278 - 0.142i)T + (0.587 - 0.809i)T^{2} \) |
| 67 | \( 1 + (-0.453 - 0.891i)T^{2} \) |
| 71 | \( 1 + (-0.891 - 0.453i)T^{2} \) |
| 73 | \( 1 + 1.97T + T^{2} \) |
| 79 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 + (-1.84 + 0.144i)T + (0.987 - 0.156i)T^{2} \) |
| 97 | \( 1 + (0.243 - 0.398i)T + (-0.453 - 0.891i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.32176864790115156935984242747, −9.900077158430581779960072402003, −8.848196484358762008591879625050, −7.55749876280028280883146102711, −6.55325447524849129514630465555, −5.96477763368944218224452867811, −5.10651809989965872761109302190, −3.92163995766779642830131788382, −2.82787762865579891425296423490, −1.92236376821973836403390783812,
2.21494520710589251224715152495, 2.84569026988039599268067648681, 4.62706554447727705716843188130, 5.08293460131620082574140364525, 5.88022342445863992484146836607, 7.03608920432862563890404580962, 7.64445767631221318197941533858, 8.839352857403180271254440199571, 9.617490583677095092752040612835, 10.60534140686924225230210172433