L(s) = 1 | + (0.951 + 0.309i)2-s + (0.809 + 0.587i)4-s + (0.891 − 0.453i)5-s + (0.587 + 0.809i)8-s + (−0.707 + 0.707i)9-s + (0.987 − 0.156i)10-s + (−1.70 + 0.133i)13-s + (0.309 + 0.951i)16-s + (−0.465 − 1.93i)17-s + (−0.891 + 0.453i)18-s + (0.987 + 0.156i)20-s + (0.587 − 0.809i)25-s + (−1.65 − 0.398i)26-s + (−0.652 + 0.399i)29-s + i·32-s + ⋯ |
L(s) = 1 | + (0.951 + 0.309i)2-s + (0.809 + 0.587i)4-s + (0.891 − 0.453i)5-s + (0.587 + 0.809i)8-s + (−0.707 + 0.707i)9-s + (0.987 − 0.156i)10-s + (−1.70 + 0.133i)13-s + (0.309 + 0.951i)16-s + (−0.465 − 1.93i)17-s + (−0.891 + 0.453i)18-s + (0.987 + 0.156i)20-s + (0.587 − 0.809i)25-s + (−1.65 − 0.398i)26-s + (−0.652 + 0.399i)29-s + i·32-s + ⋯ |
Λ(s)=(=(820s/2ΓC(s)L(s)(0.884−0.466i)Λ(1−s)
Λ(s)=(=(820s/2ΓC(s)L(s)(0.884−0.466i)Λ(1−s)
Degree: |
2 |
Conductor: |
820
= 22⋅5⋅41
|
Sign: |
0.884−0.466i
|
Analytic conductor: |
0.409233 |
Root analytic conductor: |
0.639713 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ820(403,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 820, ( :0), 0.884−0.466i)
|
Particular Values
L(21) |
≈ |
1.764165935 |
L(21) |
≈ |
1.764165935 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.951−0.309i)T |
| 5 | 1+(−0.891+0.453i)T |
| 41 | 1+(0.951+0.309i)T |
good | 3 | 1+(0.707−0.707i)T2 |
| 7 | 1+(0.156−0.987i)T2 |
| 11 | 1+(0.891−0.453i)T2 |
| 13 | 1+(1.70−0.133i)T+(0.987−0.156i)T2 |
| 17 | 1+(0.465+1.93i)T+(−0.891+0.453i)T2 |
| 19 | 1+(−0.156+0.987i)T2 |
| 23 | 1+(0.587−0.809i)T2 |
| 29 | 1+(0.652−0.399i)T+(0.453−0.891i)T2 |
| 31 | 1+(0.309−0.951i)T2 |
| 37 | 1+(−1.16+0.183i)T+(0.951−0.309i)T2 |
| 43 | 1+(0.809+0.587i)T2 |
| 47 | 1+(−0.156−0.987i)T2 |
| 53 | 1+(−1.26−0.303i)T+(0.891+0.453i)T2 |
| 59 | 1+(−0.809−0.587i)T2 |
| 61 | 1+(0.278+0.142i)T+(0.587+0.809i)T2 |
| 67 | 1+(−0.453+0.891i)T2 |
| 71 | 1+(−0.891+0.453i)T2 |
| 73 | 1+1.97T+T2 |
| 79 | 1+(−0.707−0.707i)T2 |
| 83 | 1−iT2 |
| 89 | 1+(−1.84−0.144i)T+(0.987+0.156i)T2 |
| 97 | 1+(0.243+0.398i)T+(−0.453+0.891i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.60534140686924225230210172433, −9.617490583677095092752040612835, −8.839352857403180271254440199571, −7.64445767631221318197941533858, −7.03608920432862563890404580962, −5.88022342445863992484146836607, −5.08293460131620082574140364525, −4.62706554447727705716843188130, −2.84569026988039599268067648681, −2.21494520710589251224715152495,
1.92236376821973836403390783812, 2.82787762865579891425296423490, 3.92163995766779642830131788382, 5.10651809989965872761109302190, 5.96477763368944218224452867811, 6.55325447524849129514630465555, 7.55749876280028280883146102711, 8.848196484358762008591879625050, 9.900077158430581779960072402003, 10.32176864790115156935984242747