L(s) = 1 | + (−0.363 − 0.5i)2-s + (−0.951 + 0.309i)3-s + (0.5 − 1.53i)4-s + (0.5 + 0.363i)6-s + (−0.726 − 0.236i)7-s + (−2.12 + 0.690i)8-s + (0.809 − 0.587i)9-s + (3.23 + 0.726i)11-s + 1.61i·12-s + (−0.726 − i)13-s + (0.145 + 0.449i)14-s + (−1.49 − 1.08i)16-s + (1.17 − 1.61i)17-s + (−0.587 − 0.190i)18-s + (−1.54 − 4.75i)19-s + ⋯ |
L(s) = 1 | + (−0.256 − 0.353i)2-s + (−0.549 + 0.178i)3-s + (0.250 − 0.769i)4-s + (0.204 + 0.148i)6-s + (−0.274 − 0.0892i)7-s + (−0.751 + 0.244i)8-s + (0.269 − 0.195i)9-s + (0.975 + 0.219i)11-s + 0.467i·12-s + (−0.201 − 0.277i)13-s + (0.0389 + 0.120i)14-s + (−0.374 − 0.272i)16-s + (0.285 − 0.392i)17-s + (−0.138 − 0.0450i)18-s + (−0.354 − 1.09i)19-s + ⋯ |
Λ(s)=(=(825s/2ΓC(s)L(s)(−0.861+0.508i)Λ(2−s)
Λ(s)=(=(825s/2ΓC(s+1/2)L(s)(−0.861+0.508i)Λ(1−s)
Degree: |
2 |
Conductor: |
825
= 3⋅52⋅11
|
Sign: |
−0.861+0.508i
|
Analytic conductor: |
6.58765 |
Root analytic conductor: |
2.56664 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ825(124,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 825, ( :1/2), −0.861+0.508i)
|
Particular Values
L(1) |
≈ |
0.205258−0.751612i |
L(21) |
≈ |
0.205258−0.751612i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.951−0.309i)T |
| 5 | 1 |
| 11 | 1+(−3.23−0.726i)T |
good | 2 | 1+(0.363+0.5i)T+(−0.618+1.90i)T2 |
| 7 | 1+(0.726+0.236i)T+(5.66+4.11i)T2 |
| 13 | 1+(0.726+i)T+(−4.01+12.3i)T2 |
| 17 | 1+(−1.17+1.61i)T+(−5.25−16.1i)T2 |
| 19 | 1+(1.54+4.75i)T+(−15.3+11.1i)T2 |
| 23 | 1+2.38iT−23T2 |
| 29 | 1+(−1.80+5.56i)T+(−23.4−17.0i)T2 |
| 31 | 1+(5.66−4.11i)T+(9.57−29.4i)T2 |
| 37 | 1+(7.10+2.30i)T+(29.9+21.7i)T2 |
| 41 | 1+(−0.781−2.40i)T+(−33.1+24.0i)T2 |
| 43 | 1−2.09iT−43T2 |
| 47 | 1+(4.84−1.57i)T+(38.0−27.6i)T2 |
| 53 | 1+(4.47+6.16i)T+(−16.3+50.4i)T2 |
| 59 | 1+(−2.07+6.37i)T+(−47.7−34.6i)T2 |
| 61 | 1+(5.66+4.11i)T+(18.8+58.0i)T2 |
| 67 | 1+9.38iT−67T2 |
| 71 | 1+(−6.47−4.70i)T+(21.9+67.5i)T2 |
| 73 | 1+(−12.8−4.16i)T+(59.0+42.9i)T2 |
| 79 | 1+(6.54−4.75i)T+(24.4−75.1i)T2 |
| 83 | 1+(−3.35+4.61i)T+(−25.6−78.9i)T2 |
| 89 | 1+10.8T+89T2 |
| 97 | 1+(6.74+9.28i)T+(−29.9+92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.772959549899334685369524251154, −9.456072411815195752238304075702, −8.376942833768467619381023287969, −6.92445352610633359386691820787, −6.50589007380129015667436747829, −5.42308288336283585239270100851, −4.59418616235835904482479393056, −3.23586211603942235530476408559, −1.85942904767549561768513675196, −0.44216532151717620211852097535,
1.69007076768921078179694390914, 3.29779580108506983368580819429, 4.12173024466254819935781746698, 5.56414316929014889081867534518, 6.39632549226659097851219242377, 7.07112710335512842393723399492, 7.947170879495594310776090394465, 8.820127607428923130930878899390, 9.581735067099036746932015025393, 10.64755270926679503484186309407