Properties

Label 825.2.bx.c
Level 825825
Weight 22
Character orbit 825.bx
Analytic conductor 6.5886.588
Analytic rank 00
Dimension 88
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [825,2,Mod(49,825)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(825, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("825.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 825=35211 825 = 3 \cdot 5^{2} \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 825.bx (of order 1010, degree 44, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,4,0,4,0,0,2,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.587658166766.58765816676
Analytic rank: 00
Dimension: 88
Relative dimension: 22 over Q(ζ10)\Q(\zeta_{10})
Coefficient field: Q(ζ20)\Q(\zeta_{20})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x8x6+x4x2+1 x^{8} - x^{6} + x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C10]\mathrm{SU}(2)[C_{10}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ20\zeta_{20}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ205+ζ203ζ20)q2+(ζ207ζ205+ζ20)q3+(ζ206ζ202+1)q4+(ζ204ζ202+1)q6++(3ζ206+ζ204++1)q99+O(q100) q + ( - \zeta_{20}^{5} + \zeta_{20}^{3} - \zeta_{20}) q^{2} + (\zeta_{20}^{7} - \zeta_{20}^{5} + \cdots - \zeta_{20}) q^{3} + ( - \zeta_{20}^{6} - \zeta_{20}^{2} + 1) q^{4} + (\zeta_{20}^{4} - \zeta_{20}^{2} + 1) q^{6}+ \cdots + ( - 3 \zeta_{20}^{6} + \zeta_{20}^{4} + \cdots + 1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+4q4+4q6+2q9+8q11+28q1412q16+10q19+24q21+10q24+16q26+10q2914q31+8q344q36+8q3934q41+4q4414q46++2q99+O(q100) 8 q + 4 q^{4} + 4 q^{6} + 2 q^{9} + 8 q^{11} + 28 q^{14} - 12 q^{16} + 10 q^{19} + 24 q^{21} + 10 q^{24} + 16 q^{26} + 10 q^{29} - 14 q^{31} + 8 q^{34} - 4 q^{36} + 8 q^{39} - 34 q^{41} + 4 q^{44} - 14 q^{46}+ \cdots + 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/825Z)×\left(\mathbb{Z}/825\mathbb{Z}\right)^\times.

nn 376376 551551 727727
χ(n)\chi(n) ζ206-\zeta_{20}^{6} 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
49.1
0.587785 + 0.809017i
−0.587785 0.809017i
0.951057 + 0.309017i
−0.951057 0.309017i
0.951057 0.309017i
−0.951057 + 0.309017i
0.587785 0.809017i
−0.587785 + 0.809017i
−1.53884 + 0.500000i −0.587785 + 0.809017i 0.500000 0.363271i 0 0.500000 1.53884i −3.07768 4.23607i 1.31433 1.80902i −0.309017 0.951057i 0
49.2 1.53884 0.500000i 0.587785 0.809017i 0.500000 0.363271i 0 0.500000 1.53884i 3.07768 + 4.23607i −1.31433 + 1.80902i −0.309017 0.951057i 0
124.1 −0.363271 0.500000i −0.951057 + 0.309017i 0.500000 1.53884i 0 0.500000 + 0.363271i −0.726543 0.236068i −2.12663 + 0.690983i 0.809017 0.587785i 0
124.2 0.363271 + 0.500000i 0.951057 0.309017i 0.500000 1.53884i 0 0.500000 + 0.363271i 0.726543 + 0.236068i 2.12663 0.690983i 0.809017 0.587785i 0
499.1 −0.363271 + 0.500000i −0.951057 0.309017i 0.500000 + 1.53884i 0 0.500000 0.363271i −0.726543 + 0.236068i −2.12663 0.690983i 0.809017 + 0.587785i 0
499.2 0.363271 0.500000i 0.951057 + 0.309017i 0.500000 + 1.53884i 0 0.500000 0.363271i 0.726543 0.236068i 2.12663 + 0.690983i 0.809017 + 0.587785i 0
724.1 −1.53884 0.500000i −0.587785 0.809017i 0.500000 + 0.363271i 0 0.500000 + 1.53884i −3.07768 + 4.23607i 1.31433 + 1.80902i −0.309017 + 0.951057i 0
724.2 1.53884 + 0.500000i 0.587785 + 0.809017i 0.500000 + 0.363271i 0 0.500000 + 1.53884i 3.07768 4.23607i −1.31433 1.80902i −0.309017 + 0.951057i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 49.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
11.c even 5 1 inner
55.j even 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 825.2.bx.c 8
5.b even 2 1 inner 825.2.bx.c 8
5.c odd 4 1 825.2.n.b 4
5.c odd 4 1 825.2.n.d yes 4
11.c even 5 1 inner 825.2.bx.c 8
55.j even 10 1 inner 825.2.bx.c 8
55.k odd 20 1 825.2.n.b 4
55.k odd 20 1 825.2.n.d yes 4
55.k odd 20 1 9075.2.a.z 2
55.k odd 20 1 9075.2.a.by 2
55.l even 20 1 9075.2.a.bc 2
55.l even 20 1 9075.2.a.bt 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
825.2.n.b 4 5.c odd 4 1
825.2.n.b 4 55.k odd 20 1
825.2.n.d yes 4 5.c odd 4 1
825.2.n.d yes 4 55.k odd 20 1
825.2.bx.c 8 1.a even 1 1 trivial
825.2.bx.c 8 5.b even 2 1 inner
825.2.bx.c 8 11.c even 5 1 inner
825.2.bx.c 8 55.j even 10 1 inner
9075.2.a.z 2 55.k odd 20 1
9075.2.a.bc 2 55.l even 20 1
9075.2.a.bt 2 55.l even 20 1
9075.2.a.by 2 55.k odd 20 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(825,[χ])S_{2}^{\mathrm{new}}(825, [\chi]):

T284T26+6T24+T22+1 T_{2}^{8} - 4T_{2}^{6} + 6T_{2}^{4} + T_{2}^{2} + 1 Copy content Toggle raw display
T13816T136+96T134+64T132+256 T_{13}^{8} - 16T_{13}^{6} + 96T_{13}^{4} + 64T_{13}^{2} + 256 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T84T6++1 T^{8} - 4 T^{6} + \cdots + 1 Copy content Toggle raw display
33 T8T6+T4++1 T^{8} - T^{6} + T^{4} + \cdots + 1 Copy content Toggle raw display
55 T8 T^{8} Copy content Toggle raw display
77 T8+16T6++256 T^{8} + 16 T^{6} + \cdots + 256 Copy content Toggle raw display
1111 (T44T3++121)2 (T^{4} - 4 T^{3} + \cdots + 121)^{2} Copy content Toggle raw display
1313 T816T6++256 T^{8} - 16 T^{6} + \cdots + 256 Copy content Toggle raw display
1717 T84T6++256 T^{8} - 4 T^{6} + \cdots + 256 Copy content Toggle raw display
1919 (T45T3++625)2 (T^{4} - 5 T^{3} + \cdots + 625)^{2} Copy content Toggle raw display
2323 (T4+27T2+121)2 (T^{4} + 27 T^{2} + 121)^{2} Copy content Toggle raw display
2929 (T45T3+40T2++25)2 (T^{4} - 5 T^{3} + 40 T^{2} + \cdots + 25)^{2} Copy content Toggle raw display
3131 (T4+7T3++2401)2 (T^{4} + 7 T^{3} + \cdots + 2401)^{2} Copy content Toggle raw display
3737 T889T6++14641 T^{8} - 89 T^{6} + \cdots + 14641 Copy content Toggle raw display
4141 (T4+17T3++841)2 (T^{4} + 17 T^{3} + \cdots + 841)^{2} Copy content Toggle raw display
4343 (T4+87T2+361)2 (T^{4} + 87 T^{2} + 361)^{2} Copy content Toggle raw display
4747 T819T6++923521 T^{8} - 19 T^{6} + \cdots + 923521 Copy content Toggle raw display
5353 T811T6++2825761 T^{8} - 11 T^{6} + \cdots + 2825761 Copy content Toggle raw display
5959 (T415T3++2025)2 (T^{4} - 15 T^{3} + \cdots + 2025)^{2} Copy content Toggle raw display
6161 (T4+7T3++2401)2 (T^{4} + 7 T^{3} + \cdots + 2401)^{2} Copy content Toggle raw display
6767 (T4+223T2+11881)2 (T^{4} + 223 T^{2} + 11881)^{2} Copy content Toggle raw display
7171 (T48T3++4096)2 (T^{4} - 8 T^{3} + \cdots + 4096)^{2} Copy content Toggle raw display
7373 T8281T6++13845841 T^{8} - 281 T^{6} + \cdots + 13845841 Copy content Toggle raw display
7979 (T4+15T3++625)2 (T^{4} + 15 T^{3} + \cdots + 625)^{2} Copy content Toggle raw display
8383 T876T6++3748096 T^{8} - 76 T^{6} + \cdots + 3748096 Copy content Toggle raw display
8989 (T2+15T+45)4 (T^{2} + 15 T + 45)^{4} Copy content Toggle raw display
9797 T8+71T6++707281 T^{8} + 71 T^{6} + \cdots + 707281 Copy content Toggle raw display
show more
show less