gp: [N,k,chi] = [825,2,Mod(49,825)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(825, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([0, 5, 4]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("825.49");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [8,0,0,4,0,4,0,0,2,0,8]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 20 \zeta_{20} ζ 2 0 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 825 Z ) × \left(\mathbb{Z}/825\mathbb{Z}\right)^\times ( Z / 8 2 5 Z ) × .
n n n
376 376 3 7 6
551 551 5 5 1
727 727 7 2 7
χ ( n ) \chi(n) χ ( n )
− ζ 20 6 -\zeta_{20}^{6} − ζ 2 0 6
1 1 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 825 , [ χ ] ) S_{2}^{\mathrm{new}}(825, [\chi]) S 2 n e w ( 8 2 5 , [ χ ] ) :
T 2 8 − 4 T 2 6 + 6 T 2 4 + T 2 2 + 1 T_{2}^{8} - 4T_{2}^{6} + 6T_{2}^{4} + T_{2}^{2} + 1 T 2 8 − 4 T 2 6 + 6 T 2 4 + T 2 2 + 1
T2^8 - 4*T2^6 + 6*T2^4 + T2^2 + 1
T 13 8 − 16 T 13 6 + 96 T 13 4 + 64 T 13 2 + 256 T_{13}^{8} - 16T_{13}^{6} + 96T_{13}^{4} + 64T_{13}^{2} + 256 T 1 3 8 − 1 6 T 1 3 6 + 9 6 T 1 3 4 + 6 4 T 1 3 2 + 2 5 6
T13^8 - 16*T13^6 + 96*T13^4 + 64*T13^2 + 256
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 8 − 4 T 6 + ⋯ + 1 T^{8} - 4 T^{6} + \cdots + 1 T 8 − 4 T 6 + ⋯ + 1
T^8 - 4*T^6 + 6*T^4 + T^2 + 1
3 3 3
T 8 − T 6 + T 4 + ⋯ + 1 T^{8} - T^{6} + T^{4} + \cdots + 1 T 8 − T 6 + T 4 + ⋯ + 1
T^8 - T^6 + T^4 - T^2 + 1
5 5 5
T 8 T^{8} T 8
T^8
7 7 7
T 8 + 16 T 6 + ⋯ + 256 T^{8} + 16 T^{6} + \cdots + 256 T 8 + 1 6 T 6 + ⋯ + 2 5 6
T^8 + 16*T^6 + 736*T^4 - 704*T^2 + 256
11 11 1 1
( T 4 − 4 T 3 + ⋯ + 121 ) 2 (T^{4} - 4 T^{3} + \cdots + 121)^{2} ( T 4 − 4 T 3 + ⋯ + 1 2 1 ) 2
(T^4 - 4*T^3 + 6*T^2 - 44*T + 121)^2
13 13 1 3
T 8 − 16 T 6 + ⋯ + 256 T^{8} - 16 T^{6} + \cdots + 256 T 8 − 1 6 T 6 + ⋯ + 2 5 6
T^8 - 16*T^6 + 96*T^4 + 64*T^2 + 256
17 17 1 7
T 8 − 4 T 6 + ⋯ + 256 T^{8} - 4 T^{6} + \cdots + 256 T 8 − 4 T 6 + ⋯ + 2 5 6
T^8 - 4*T^6 + 16*T^4 - 64*T^2 + 256
19 19 1 9
( T 4 − 5 T 3 + ⋯ + 625 ) 2 (T^{4} - 5 T^{3} + \cdots + 625)^{2} ( T 4 − 5 T 3 + ⋯ + 6 2 5 ) 2
(T^4 - 5*T^3 + 25*T^2 - 125*T + 625)^2
23 23 2 3
( T 4 + 27 T 2 + 121 ) 2 (T^{4} + 27 T^{2} + 121)^{2} ( T 4 + 2 7 T 2 + 1 2 1 ) 2
(T^4 + 27*T^2 + 121)^2
29 29 2 9
( T 4 − 5 T 3 + 40 T 2 + ⋯ + 25 ) 2 (T^{4} - 5 T^{3} + 40 T^{2} + \cdots + 25)^{2} ( T 4 − 5 T 3 + 4 0 T 2 + ⋯ + 2 5 ) 2
(T^4 - 5*T^3 + 40*T^2 - 50*T + 25)^2
31 31 3 1
( T 4 + 7 T 3 + ⋯ + 2401 ) 2 (T^{4} + 7 T^{3} + \cdots + 2401)^{2} ( T 4 + 7 T 3 + ⋯ + 2 4 0 1 ) 2
(T^4 + 7*T^3 + 49*T^2 + 343*T + 2401)^2
37 37 3 7
T 8 − 89 T 6 + ⋯ + 14641 T^{8} - 89 T^{6} + \cdots + 14641 T 8 − 8 9 T 6 + ⋯ + 1 4 6 4 1
T^8 - 89*T^6 + 3001*T^4 + 3751*T^2 + 14641
41 41 4 1
( T 4 + 17 T 3 + ⋯ + 841 ) 2 (T^{4} + 17 T^{3} + \cdots + 841)^{2} ( T 4 + 1 7 T 3 + ⋯ + 8 4 1 ) 2
(T^4 + 17*T^3 + 109*T^2 - 87*T + 841)^2
43 43 4 3
( T 4 + 87 T 2 + 361 ) 2 (T^{4} + 87 T^{2} + 361)^{2} ( T 4 + 8 7 T 2 + 3 6 1 ) 2
(T^4 + 87*T^2 + 361)^2
47 47 4 7
T 8 − 19 T 6 + ⋯ + 923521 T^{8} - 19 T^{6} + \cdots + 923521 T 8 − 1 9 T 6 + ⋯ + 9 2 3 5 2 1
T^8 - 19*T^6 + 1086*T^4 - 42284*T^2 + 923521
53 53 5 3
T 8 − 11 T 6 + ⋯ + 2825761 T^{8} - 11 T^{6} + \cdots + 2825761 T 8 − 1 1 T 6 + ⋯ + 2 8 2 5 7 6 1
T^8 - 11*T^6 + 2526*T^4 - 127756*T^2 + 2825761
59 59 5 9
( T 4 − 15 T 3 + ⋯ + 2025 ) 2 (T^{4} - 15 T^{3} + \cdots + 2025)^{2} ( T 4 − 1 5 T 3 + ⋯ + 2 0 2 5 ) 2
(T^4 - 15*T^3 + 135*T^2 - 675*T + 2025)^2
61 61 6 1
( T 4 + 7 T 3 + ⋯ + 2401 ) 2 (T^{4} + 7 T^{3} + \cdots + 2401)^{2} ( T 4 + 7 T 3 + ⋯ + 2 4 0 1 ) 2
(T^4 + 7*T^3 + 49*T^2 + 343*T + 2401)^2
67 67 6 7
( T 4 + 223 T 2 + 11881 ) 2 (T^{4} + 223 T^{2} + 11881)^{2} ( T 4 + 2 2 3 T 2 + 1 1 8 8 1 ) 2
(T^4 + 223*T^2 + 11881)^2
71 71 7 1
( T 4 − 8 T 3 + ⋯ + 4096 ) 2 (T^{4} - 8 T^{3} + \cdots + 4096)^{2} ( T 4 − 8 T 3 + ⋯ + 4 0 9 6 ) 2
(T^4 - 8*T^3 + 64*T^2 - 512*T + 4096)^2
73 73 7 3
T 8 − 281 T 6 + ⋯ + 13845841 T^{8} - 281 T^{6} + \cdots + 13845841 T 8 − 2 8 1 T 6 + ⋯ + 1 3 8 4 5 8 4 1
T^8 - 281*T^6 + 29641*T^4 + 293959*T^2 + 13845841
79 79 7 9
( T 4 + 15 T 3 + ⋯ + 625 ) 2 (T^{4} + 15 T^{3} + \cdots + 625)^{2} ( T 4 + 1 5 T 3 + ⋯ + 6 2 5 ) 2
(T^4 + 15*T^3 + 100*T^2 + 250*T + 625)^2
83 83 8 3
T 8 − 76 T 6 + ⋯ + 3748096 T^{8} - 76 T^{6} + \cdots + 3748096 T 8 − 7 6 T 6 + ⋯ + 3 7 4 8 0 9 6
T^8 - 76*T^6 + 2656*T^4 - 30976*T^2 + 3748096
89 89 8 9
( T 2 + 15 T + 45 ) 4 (T^{2} + 15 T + 45)^{4} ( T 2 + 1 5 T + 4 5 ) 4
(T^2 + 15*T + 45)^4
97 97 9 7
T 8 + 71 T 6 + ⋯ + 707281 T^{8} + 71 T^{6} + \cdots + 707281 T 8 + 7 1 T 6 + ⋯ + 7 0 7 2 8 1
T^8 + 71*T^6 + 16521*T^4 - 175769*T^2 + 707281
show more
show less