Properties

Label 825.2.bx.c
Level $825$
Weight $2$
Character orbit 825.bx
Analytic conductor $6.588$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [825,2,Mod(49,825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(825, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 5, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("825.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 825.bx (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.58765816676\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\Q(\zeta_{20})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{20}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{20}^{5} + \zeta_{20}^{3} - \zeta_{20}) q^{2} + (\zeta_{20}^{7} - \zeta_{20}^{5} + \cdots - \zeta_{20}) q^{3} + ( - \zeta_{20}^{6} - \zeta_{20}^{2} + 1) q^{4} + (\zeta_{20}^{4} - \zeta_{20}^{2} + 1) q^{6}+ \cdots + ( - 3 \zeta_{20}^{6} + \zeta_{20}^{4} + \cdots + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{4} + 4 q^{6} + 2 q^{9} + 8 q^{11} + 28 q^{14} - 12 q^{16} + 10 q^{19} + 24 q^{21} + 10 q^{24} + 16 q^{26} + 10 q^{29} - 14 q^{31} + 8 q^{34} - 4 q^{36} + 8 q^{39} - 34 q^{41} + 4 q^{44} - 14 q^{46}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/825\mathbb{Z}\right)^\times\).

\(n\) \(376\) \(551\) \(727\)
\(\chi(n)\) \(-\zeta_{20}^{6}\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
0.587785 + 0.809017i
−0.587785 0.809017i
0.951057 + 0.309017i
−0.951057 0.309017i
0.951057 0.309017i
−0.951057 + 0.309017i
0.587785 0.809017i
−0.587785 + 0.809017i
−1.53884 + 0.500000i −0.587785 + 0.809017i 0.500000 0.363271i 0 0.500000 1.53884i −3.07768 4.23607i 1.31433 1.80902i −0.309017 0.951057i 0
49.2 1.53884 0.500000i 0.587785 0.809017i 0.500000 0.363271i 0 0.500000 1.53884i 3.07768 + 4.23607i −1.31433 + 1.80902i −0.309017 0.951057i 0
124.1 −0.363271 0.500000i −0.951057 + 0.309017i 0.500000 1.53884i 0 0.500000 + 0.363271i −0.726543 0.236068i −2.12663 + 0.690983i 0.809017 0.587785i 0
124.2 0.363271 + 0.500000i 0.951057 0.309017i 0.500000 1.53884i 0 0.500000 + 0.363271i 0.726543 + 0.236068i 2.12663 0.690983i 0.809017 0.587785i 0
499.1 −0.363271 + 0.500000i −0.951057 0.309017i 0.500000 + 1.53884i 0 0.500000 0.363271i −0.726543 + 0.236068i −2.12663 0.690983i 0.809017 + 0.587785i 0
499.2 0.363271 0.500000i 0.951057 + 0.309017i 0.500000 + 1.53884i 0 0.500000 0.363271i 0.726543 0.236068i 2.12663 + 0.690983i 0.809017 + 0.587785i 0
724.1 −1.53884 0.500000i −0.587785 0.809017i 0.500000 + 0.363271i 0 0.500000 + 1.53884i −3.07768 + 4.23607i 1.31433 + 1.80902i −0.309017 + 0.951057i 0
724.2 1.53884 + 0.500000i 0.587785 + 0.809017i 0.500000 + 0.363271i 0 0.500000 + 1.53884i 3.07768 4.23607i −1.31433 1.80902i −0.309017 + 0.951057i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 49.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
11.c even 5 1 inner
55.j even 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 825.2.bx.c 8
5.b even 2 1 inner 825.2.bx.c 8
5.c odd 4 1 825.2.n.b 4
5.c odd 4 1 825.2.n.d yes 4
11.c even 5 1 inner 825.2.bx.c 8
55.j even 10 1 inner 825.2.bx.c 8
55.k odd 20 1 825.2.n.b 4
55.k odd 20 1 825.2.n.d yes 4
55.k odd 20 1 9075.2.a.z 2
55.k odd 20 1 9075.2.a.by 2
55.l even 20 1 9075.2.a.bc 2
55.l even 20 1 9075.2.a.bt 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
825.2.n.b 4 5.c odd 4 1
825.2.n.b 4 55.k odd 20 1
825.2.n.d yes 4 5.c odd 4 1
825.2.n.d yes 4 55.k odd 20 1
825.2.bx.c 8 1.a even 1 1 trivial
825.2.bx.c 8 5.b even 2 1 inner
825.2.bx.c 8 11.c even 5 1 inner
825.2.bx.c 8 55.j even 10 1 inner
9075.2.a.z 2 55.k odd 20 1
9075.2.a.bc 2 55.l even 20 1
9075.2.a.bt 2 55.l even 20 1
9075.2.a.by 2 55.k odd 20 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(825, [\chi])\):

\( T_{2}^{8} - 4T_{2}^{6} + 6T_{2}^{4} + T_{2}^{2} + 1 \) Copy content Toggle raw display
\( T_{13}^{8} - 16T_{13}^{6} + 96T_{13}^{4} + 64T_{13}^{2} + 256 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - 4 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{8} - T^{6} + T^{4} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( T^{8} + 16 T^{6} + \cdots + 256 \) Copy content Toggle raw display
$11$ \( (T^{4} - 4 T^{3} + \cdots + 121)^{2} \) Copy content Toggle raw display
$13$ \( T^{8} - 16 T^{6} + \cdots + 256 \) Copy content Toggle raw display
$17$ \( T^{8} - 4 T^{6} + \cdots + 256 \) Copy content Toggle raw display
$19$ \( (T^{4} - 5 T^{3} + \cdots + 625)^{2} \) Copy content Toggle raw display
$23$ \( (T^{4} + 27 T^{2} + 121)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} - 5 T^{3} + 40 T^{2} + \cdots + 25)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} + 7 T^{3} + \cdots + 2401)^{2} \) Copy content Toggle raw display
$37$ \( T^{8} - 89 T^{6} + \cdots + 14641 \) Copy content Toggle raw display
$41$ \( (T^{4} + 17 T^{3} + \cdots + 841)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} + 87 T^{2} + 361)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} - 19 T^{6} + \cdots + 923521 \) Copy content Toggle raw display
$53$ \( T^{8} - 11 T^{6} + \cdots + 2825761 \) Copy content Toggle raw display
$59$ \( (T^{4} - 15 T^{3} + \cdots + 2025)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} + 7 T^{3} + \cdots + 2401)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} + 223 T^{2} + 11881)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} - 8 T^{3} + \cdots + 4096)^{2} \) Copy content Toggle raw display
$73$ \( T^{8} - 281 T^{6} + \cdots + 13845841 \) Copy content Toggle raw display
$79$ \( (T^{4} + 15 T^{3} + \cdots + 625)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} - 76 T^{6} + \cdots + 3748096 \) Copy content Toggle raw display
$89$ \( (T^{2} + 15 T + 45)^{4} \) Copy content Toggle raw display
$97$ \( T^{8} + 71 T^{6} + \cdots + 707281 \) Copy content Toggle raw display
show more
show less