L(s) = 1 | + (−1.22 − 1.22i)2-s + (−1.22 − 1.22i)3-s + 0.999i·4-s + 2.99i·6-s + (−2.44 + 2.44i)7-s + (−1.22 + 1.22i)8-s + 2.99i·9-s + i·11-s + (1.22 − 1.22i)12-s + (2.44 + 2.44i)13-s + 5.99·14-s + 5·16-s + (−4.89 − 4.89i)17-s + (3.67 − 3.67i)18-s − 2i·19-s + ⋯ |
L(s) = 1 | + (−0.866 − 0.866i)2-s + (−0.707 − 0.707i)3-s + 0.499i·4-s + 1.22i·6-s + (−0.925 + 0.925i)7-s + (−0.433 + 0.433i)8-s + 0.999i·9-s + 0.301i·11-s + (0.353 − 0.353i)12-s + (0.679 + 0.679i)13-s + 1.60·14-s + 1.25·16-s + (−1.18 − 1.18i)17-s + (0.866 − 0.866i)18-s − 0.458i·19-s + ⋯ |
Λ(s)=(=(825s/2ΓC(s)L(s)(−0.229+0.973i)Λ(2−s)
Λ(s)=(=(825s/2ΓC(s+1/2)L(s)(−0.229+0.973i)Λ(1−s)
Degree: |
2 |
Conductor: |
825
= 3⋅52⋅11
|
Sign: |
−0.229+0.973i
|
Analytic conductor: |
6.58765 |
Root analytic conductor: |
2.56664 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ825(518,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 825, ( :1/2), −0.229+0.973i)
|
Particular Values
L(1) |
≈ |
0.328579−0.415178i |
L(21) |
≈ |
0.328579−0.415178i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.22+1.22i)T |
| 5 | 1 |
| 11 | 1−iT |
good | 2 | 1+(1.22+1.22i)T+2iT2 |
| 7 | 1+(2.44−2.44i)T−7iT2 |
| 13 | 1+(−2.44−2.44i)T+13iT2 |
| 17 | 1+(4.89+4.89i)T+17iT2 |
| 19 | 1+2iT−19T2 |
| 23 | 1+(−4.89+4.89i)T−23iT2 |
| 29 | 1+6T+29T2 |
| 31 | 1−4T+31T2 |
| 37 | 1−37iT2 |
| 41 | 1+6iT−41T2 |
| 43 | 1+(−7.34−7.34i)T+43iT2 |
| 47 | 1+(−4.89−4.89i)T+47iT2 |
| 53 | 1+(−4.89+4.89i)T−53iT2 |
| 59 | 1+59T2 |
| 61 | 1−2T+61T2 |
| 67 | 1+(2.44−2.44i)T−67iT2 |
| 71 | 1−12iT−71T2 |
| 73 | 1+(2.44+2.44i)T+73iT2 |
| 79 | 1+10iT−79T2 |
| 83 | 1+(−7.34+7.34i)T−83iT2 |
| 89 | 1−12T+89T2 |
| 97 | 1+(−9.79+9.79i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.01368933805154981693588478598, −9.010982543903517233195043798873, −8.838323093869874563040642904431, −7.37054315867894742638343854616, −6.52341874887124592549351828444, −5.78296719568389731010845163604, −4.64232924007728050199956998151, −2.83110845861132922722951454565, −2.11547747001274555263406051458, −0.59891573596854514569297922697,
0.77848454641705121617388825512, 3.42429216389021605845858533824, 3.99890462760827521878461780204, 5.55690593678711354309153587803, 6.27769627525307371960362385828, 6.93668977679232624864165114260, 7.898102002711929811285412962623, 8.922055394475718171978809646328, 9.457550556024299715679062740995, 10.51332853786189906090162755281