L(s) = 1 | + (−1.22 − 1.22i)2-s + (−1.22 − 1.22i)3-s + 0.999i·4-s + 2.99i·6-s + (−2.44 + 2.44i)7-s + (−1.22 + 1.22i)8-s + 2.99i·9-s + i·11-s + (1.22 − 1.22i)12-s + (2.44 + 2.44i)13-s + 5.99·14-s + 5·16-s + (−4.89 − 4.89i)17-s + (3.67 − 3.67i)18-s − 2i·19-s + ⋯ |
L(s) = 1 | + (−0.866 − 0.866i)2-s + (−0.707 − 0.707i)3-s + 0.499i·4-s + 1.22i·6-s + (−0.925 + 0.925i)7-s + (−0.433 + 0.433i)8-s + 0.999i·9-s + 0.301i·11-s + (0.353 − 0.353i)12-s + (0.679 + 0.679i)13-s + 1.60·14-s + 1.25·16-s + (−1.18 − 1.18i)17-s + (0.866 − 0.866i)18-s − 0.458i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.229 + 0.973i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.229 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.328579 - 0.415178i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.328579 - 0.415178i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.22 + 1.22i)T \) |
| 5 | \( 1 \) |
| 11 | \( 1 - iT \) |
good | 2 | \( 1 + (1.22 + 1.22i)T + 2iT^{2} \) |
| 7 | \( 1 + (2.44 - 2.44i)T - 7iT^{2} \) |
| 13 | \( 1 + (-2.44 - 2.44i)T + 13iT^{2} \) |
| 17 | \( 1 + (4.89 + 4.89i)T + 17iT^{2} \) |
| 19 | \( 1 + 2iT - 19T^{2} \) |
| 23 | \( 1 + (-4.89 + 4.89i)T - 23iT^{2} \) |
| 29 | \( 1 + 6T + 29T^{2} \) |
| 31 | \( 1 - 4T + 31T^{2} \) |
| 37 | \( 1 - 37iT^{2} \) |
| 41 | \( 1 + 6iT - 41T^{2} \) |
| 43 | \( 1 + (-7.34 - 7.34i)T + 43iT^{2} \) |
| 47 | \( 1 + (-4.89 - 4.89i)T + 47iT^{2} \) |
| 53 | \( 1 + (-4.89 + 4.89i)T - 53iT^{2} \) |
| 59 | \( 1 + 59T^{2} \) |
| 61 | \( 1 - 2T + 61T^{2} \) |
| 67 | \( 1 + (2.44 - 2.44i)T - 67iT^{2} \) |
| 71 | \( 1 - 12iT - 71T^{2} \) |
| 73 | \( 1 + (2.44 + 2.44i)T + 73iT^{2} \) |
| 79 | \( 1 + 10iT - 79T^{2} \) |
| 83 | \( 1 + (-7.34 + 7.34i)T - 83iT^{2} \) |
| 89 | \( 1 - 12T + 89T^{2} \) |
| 97 | \( 1 + (-9.79 + 9.79i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.01368933805154981693588478598, −9.010982543903517233195043798873, −8.838323093869874563040642904431, −7.37054315867894742638343854616, −6.52341874887124592549351828444, −5.78296719568389731010845163604, −4.64232924007728050199956998151, −2.83110845861132922722951454565, −2.11547747001274555263406051458, −0.59891573596854514569297922697,
0.77848454641705121617388825512, 3.42429216389021605845858533824, 3.99890462760827521878461780204, 5.55690593678711354309153587803, 6.27769627525307371960362385828, 6.93668977679232624864165114260, 7.898102002711929811285412962623, 8.922055394475718171978809646328, 9.457550556024299715679062740995, 10.51332853786189906090162755281