Properties

Label 825.2.k.e
Level 825825
Weight 22
Character orbit 825.k
Analytic conductor 6.5886.588
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [825,2,Mod(518,825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(825, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("825.518");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 825=35211 825 = 3 \cdot 5^{2} \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 825.k (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.587658166766.58765816676
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(i)\Q(i)
Coefficient field: Q(i,6)\Q(i, \sqrt{6})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+9 x^{4} + 9 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+β1q3+β2q4+3β2q62β3q7β3q8+3β2q9+β2q11+β3q122β1q13+6q14+5q16+3q99+O(q100) q + \beta_1 q^{2} + \beta_1 q^{3} + \beta_{2} q^{4} + 3 \beta_{2} q^{6} - 2 \beta_{3} q^{7} - \beta_{3} q^{8} + 3 \beta_{2} q^{9} + \beta_{2} q^{11} + \beta_{3} q^{12} - 2 \beta_1 q^{13} + 6 q^{14} + 5 q^{16}+ \cdots - 3 q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+24q14+20q16+24q21+12q2424q29+16q3112q364q4448q4636q54+8q6112q6648q69+8q7636q81+48q8948q91+12q99+O(q100) 4 q + 24 q^{14} + 20 q^{16} + 24 q^{21} + 12 q^{24} - 24 q^{29} + 16 q^{31} - 12 q^{36} - 4 q^{44} - 48 q^{46} - 36 q^{54} + 8 q^{61} - 12 q^{66} - 48 q^{69} + 8 q^{76} - 36 q^{81} + 48 q^{89} - 48 q^{91}+ \cdots - 12 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+9 x^{4} + 9 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/3 ( \nu^{2} ) / 3 Copy content Toggle raw display
β3\beta_{3}== (ν3)/3 ( \nu^{3} ) / 3 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 3β2 3\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 3β3 3\beta_{3} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/825Z)×\left(\mathbb{Z}/825\mathbb{Z}\right)^\times.

nn 376376 551551 727727
χ(n)\chi(n) 11 1-1 β2-\beta_{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
518.1
−1.22474 1.22474i
1.22474 + 1.22474i
−1.22474 + 1.22474i
1.22474 1.22474i
−1.22474 1.22474i −1.22474 1.22474i 1.00000i 0 3.00000i −2.44949 + 2.44949i −1.22474 + 1.22474i 3.00000i 0
518.2 1.22474 + 1.22474i 1.22474 + 1.22474i 1.00000i 0 3.00000i 2.44949 2.44949i 1.22474 1.22474i 3.00000i 0
782.1 −1.22474 + 1.22474i −1.22474 + 1.22474i 1.00000i 0 3.00000i −2.44949 2.44949i −1.22474 1.22474i 3.00000i 0
782.2 1.22474 1.22474i 1.22474 1.22474i 1.00000i 0 3.00000i 2.44949 + 2.44949i 1.22474 + 1.22474i 3.00000i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
15.e even 4 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 825.2.k.e yes 4
3.b odd 2 1 825.2.k.d 4
5.b even 2 1 inner 825.2.k.e yes 4
5.c odd 4 2 825.2.k.d 4
15.d odd 2 1 825.2.k.d 4
15.e even 4 2 inner 825.2.k.e yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
825.2.k.d 4 3.b odd 2 1
825.2.k.d 4 5.c odd 4 2
825.2.k.d 4 15.d odd 2 1
825.2.k.e yes 4 1.a even 1 1 trivial
825.2.k.e yes 4 5.b even 2 1 inner
825.2.k.e yes 4 15.e even 4 2 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(825,[χ])S_{2}^{\mathrm{new}}(825, [\chi]):

T24+9 T_{2}^{4} + 9 Copy content Toggle raw display
T74+144 T_{7}^{4} + 144 Copy content Toggle raw display
T134+144 T_{13}^{4} + 144 Copy content Toggle raw display
T29+6 T_{29} + 6 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4+9 T^{4} + 9 Copy content Toggle raw display
33 T4+9 T^{4} + 9 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4+144 T^{4} + 144 Copy content Toggle raw display
1111 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
1313 T4+144 T^{4} + 144 Copy content Toggle raw display
1717 T4+2304 T^{4} + 2304 Copy content Toggle raw display
1919 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
2323 T4+2304 T^{4} + 2304 Copy content Toggle raw display
2929 (T+6)4 (T + 6)^{4} Copy content Toggle raw display
3131 (T4)4 (T - 4)^{4} Copy content Toggle raw display
3737 T4 T^{4} Copy content Toggle raw display
4141 (T2+36)2 (T^{2} + 36)^{2} Copy content Toggle raw display
4343 T4+11664 T^{4} + 11664 Copy content Toggle raw display
4747 T4+2304 T^{4} + 2304 Copy content Toggle raw display
5353 T4+2304 T^{4} + 2304 Copy content Toggle raw display
5959 T4 T^{4} Copy content Toggle raw display
6161 (T2)4 (T - 2)^{4} Copy content Toggle raw display
6767 T4+144 T^{4} + 144 Copy content Toggle raw display
7171 (T2+144)2 (T^{2} + 144)^{2} Copy content Toggle raw display
7373 T4+144 T^{4} + 144 Copy content Toggle raw display
7979 (T2+100)2 (T^{2} + 100)^{2} Copy content Toggle raw display
8383 T4+11664 T^{4} + 11664 Copy content Toggle raw display
8989 (T12)4 (T - 12)^{4} Copy content Toggle raw display
9797 T4+36864 T^{4} + 36864 Copy content Toggle raw display
show more
show less