Properties

Label 825.2.k.e
Level $825$
Weight $2$
Character orbit 825.k
Analytic conductor $6.588$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [825,2,Mod(518,825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(825, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("825.518");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 825.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.58765816676\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + \beta_1 q^{3} + \beta_{2} q^{4} + 3 \beta_{2} q^{6} - 2 \beta_{3} q^{7} - \beta_{3} q^{8} + 3 \beta_{2} q^{9} + \beta_{2} q^{11} + \beta_{3} q^{12} - 2 \beta_1 q^{13} + 6 q^{14} + 5 q^{16}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 24 q^{14} + 20 q^{16} + 24 q^{21} + 12 q^{24} - 24 q^{29} + 16 q^{31} - 12 q^{36} - 4 q^{44} - 48 q^{46} - 36 q^{54} + 8 q^{61} - 12 q^{66} - 48 q^{69} + 8 q^{76} - 36 q^{81} + 48 q^{89} - 48 q^{91}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 3\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/825\mathbb{Z}\right)^\times\).

\(n\) \(376\) \(551\) \(727\)
\(\chi(n)\) \(1\) \(-1\) \(-\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
518.1
−1.22474 1.22474i
1.22474 + 1.22474i
−1.22474 + 1.22474i
1.22474 1.22474i
−1.22474 1.22474i −1.22474 1.22474i 1.00000i 0 3.00000i −2.44949 + 2.44949i −1.22474 + 1.22474i 3.00000i 0
518.2 1.22474 + 1.22474i 1.22474 + 1.22474i 1.00000i 0 3.00000i 2.44949 2.44949i 1.22474 1.22474i 3.00000i 0
782.1 −1.22474 + 1.22474i −1.22474 + 1.22474i 1.00000i 0 3.00000i −2.44949 2.44949i −1.22474 1.22474i 3.00000i 0
782.2 1.22474 1.22474i 1.22474 1.22474i 1.00000i 0 3.00000i 2.44949 + 2.44949i 1.22474 + 1.22474i 3.00000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
15.e even 4 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 825.2.k.e yes 4
3.b odd 2 1 825.2.k.d 4
5.b even 2 1 inner 825.2.k.e yes 4
5.c odd 4 2 825.2.k.d 4
15.d odd 2 1 825.2.k.d 4
15.e even 4 2 inner 825.2.k.e yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
825.2.k.d 4 3.b odd 2 1
825.2.k.d 4 5.c odd 4 2
825.2.k.d 4 15.d odd 2 1
825.2.k.e yes 4 1.a even 1 1 trivial
825.2.k.e yes 4 5.b even 2 1 inner
825.2.k.e yes 4 15.e even 4 2 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(825, [\chi])\):

\( T_{2}^{4} + 9 \) Copy content Toggle raw display
\( T_{7}^{4} + 144 \) Copy content Toggle raw display
\( T_{13}^{4} + 144 \) Copy content Toggle raw display
\( T_{29} + 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 9 \) Copy content Toggle raw display
$3$ \( T^{4} + 9 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 144 \) Copy content Toggle raw display
$11$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + 144 \) Copy content Toggle raw display
$17$ \( T^{4} + 2304 \) Copy content Toggle raw display
$19$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 2304 \) Copy content Toggle raw display
$29$ \( (T + 6)^{4} \) Copy content Toggle raw display
$31$ \( (T - 4)^{4} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 11664 \) Copy content Toggle raw display
$47$ \( T^{4} + 2304 \) Copy content Toggle raw display
$53$ \( T^{4} + 2304 \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( (T - 2)^{4} \) Copy content Toggle raw display
$67$ \( T^{4} + 144 \) Copy content Toggle raw display
$71$ \( (T^{2} + 144)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 144 \) Copy content Toggle raw display
$79$ \( (T^{2} + 100)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 11664 \) Copy content Toggle raw display
$89$ \( (T - 12)^{4} \) Copy content Toggle raw display
$97$ \( T^{4} + 36864 \) Copy content Toggle raw display
show more
show less