L(s) = 1 | + 2.35·2-s + 1.73i·3-s + 1.53·4-s + 4.07i·6-s − 6.42·7-s − 5.79·8-s − 2.99·9-s + (3.26 − 10.5i)11-s + 2.66i·12-s + 7.68·13-s − 15.1·14-s − 19.7·16-s + 8.15·17-s − 7.05·18-s − 30.4i·19-s + ⋯ |
L(s) = 1 | + 1.17·2-s + 0.577i·3-s + 0.383·4-s + 0.679i·6-s − 0.918·7-s − 0.724·8-s − 0.333·9-s + (0.297 − 0.954i)11-s + 0.221i·12-s + 0.591·13-s − 1.08·14-s − 1.23·16-s + 0.479·17-s − 0.392·18-s − 1.60i·19-s + ⋯ |
Λ(s)=(=(825s/2ΓC(s)L(s)(0.161+0.986i)Λ(3−s)
Λ(s)=(=(825s/2ΓC(s+1)L(s)(0.161+0.986i)Λ(1−s)
Degree: |
2 |
Conductor: |
825
= 3⋅52⋅11
|
Sign: |
0.161+0.986i
|
Analytic conductor: |
22.4796 |
Root analytic conductor: |
4.74126 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ825(274,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 825, ( :1), 0.161+0.986i)
|
Particular Values
L(23) |
≈ |
1.890377365 |
L(21) |
≈ |
1.890377365 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−1.73iT |
| 5 | 1 |
| 11 | 1+(−3.26+10.5i)T |
good | 2 | 1−2.35T+4T2 |
| 7 | 1+6.42T+49T2 |
| 13 | 1−7.68T+169T2 |
| 17 | 1−8.15T+289T2 |
| 19 | 1+30.4iT−361T2 |
| 23 | 1+31.6iT−529T2 |
| 29 | 1−6.88iT−841T2 |
| 31 | 1−51.1T+961T2 |
| 37 | 1−19.4iT−1.36e3T2 |
| 41 | 1+47.9iT−1.68e3T2 |
| 43 | 1+81.8T+1.84e3T2 |
| 47 | 1+30.1iT−2.20e3T2 |
| 53 | 1−26.0iT−2.80e3T2 |
| 59 | 1+82.7T+3.48e3T2 |
| 61 | 1+75.4iT−3.72e3T2 |
| 67 | 1−34iT−4.48e3T2 |
| 71 | 1+72.7T+5.04e3T2 |
| 73 | 1−54.8T+5.32e3T2 |
| 79 | 1−24.3iT−6.24e3T2 |
| 83 | 1−0.923T+6.88e3T2 |
| 89 | 1+44.8T+7.92e3T2 |
| 97 | 1−21.2iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.879961805461761980513997874137, −8.964625365235626545709181559195, −8.405957290960562350926540130524, −6.66862589048834094300584837630, −6.27735447699628078763967396242, −5.21499507098616068580958392760, −4.40833735398219060646882626141, −3.38638694402186271955960974073, −2.83373507663556692658547598292, −0.42648413184385779367089645420,
1.54321745607103305930250826589, 3.03765686614352284075997226973, 3.75332230209041089257256637853, 4.83339748008696943710181872572, 5.97683487938385396093107649922, 6.35890724284001835498404511365, 7.44701100534141527123991929900, 8.397762765531320726812767216366, 9.560438199114060771204030959959, 10.06025520142869752925996857542