L(s) = 1 | + 2.35·2-s + 1.73i·3-s + 1.53·4-s + 4.07i·6-s − 6.42·7-s − 5.79·8-s − 2.99·9-s + (3.26 − 10.5i)11-s + 2.66i·12-s + 7.68·13-s − 15.1·14-s − 19.7·16-s + 8.15·17-s − 7.05·18-s − 30.4i·19-s + ⋯ |
L(s) = 1 | + 1.17·2-s + 0.577i·3-s + 0.383·4-s + 0.679i·6-s − 0.918·7-s − 0.724·8-s − 0.333·9-s + (0.297 − 0.954i)11-s + 0.221i·12-s + 0.591·13-s − 1.08·14-s − 1.23·16-s + 0.479·17-s − 0.392·18-s − 1.60i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.161 + 0.986i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.161 + 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.890377365\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.890377365\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - 1.73iT \) |
| 5 | \( 1 \) |
| 11 | \( 1 + (-3.26 + 10.5i)T \) |
good | 2 | \( 1 - 2.35T + 4T^{2} \) |
| 7 | \( 1 + 6.42T + 49T^{2} \) |
| 13 | \( 1 - 7.68T + 169T^{2} \) |
| 17 | \( 1 - 8.15T + 289T^{2} \) |
| 19 | \( 1 + 30.4iT - 361T^{2} \) |
| 23 | \( 1 + 31.6iT - 529T^{2} \) |
| 29 | \( 1 - 6.88iT - 841T^{2} \) |
| 31 | \( 1 - 51.1T + 961T^{2} \) |
| 37 | \( 1 - 19.4iT - 1.36e3T^{2} \) |
| 41 | \( 1 + 47.9iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 81.8T + 1.84e3T^{2} \) |
| 47 | \( 1 + 30.1iT - 2.20e3T^{2} \) |
| 53 | \( 1 - 26.0iT - 2.80e3T^{2} \) |
| 59 | \( 1 + 82.7T + 3.48e3T^{2} \) |
| 61 | \( 1 + 75.4iT - 3.72e3T^{2} \) |
| 67 | \( 1 - 34iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 72.7T + 5.04e3T^{2} \) |
| 73 | \( 1 - 54.8T + 5.32e3T^{2} \) |
| 79 | \( 1 - 24.3iT - 6.24e3T^{2} \) |
| 83 | \( 1 - 0.923T + 6.88e3T^{2} \) |
| 89 | \( 1 + 44.8T + 7.92e3T^{2} \) |
| 97 | \( 1 - 21.2iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.879961805461761980513997874137, −8.964625365235626545709181559195, −8.405957290960562350926540130524, −6.66862589048834094300584837630, −6.27735447699628078763967396242, −5.21499507098616068580958392760, −4.40833735398219060646882626141, −3.38638694402186271955960974073, −2.83373507663556692658547598292, −0.42648413184385779367089645420,
1.54321745607103305930250826589, 3.03765686614352284075997226973, 3.75332230209041089257256637853, 4.83339748008696943710181872572, 5.97683487938385396093107649922, 6.35890724284001835498404511365, 7.44701100534141527123991929900, 8.397762765531320726812767216366, 9.560438199114060771204030959959, 10.06025520142869752925996857542