Properties

Label 825.3.h.a.274.6
Level $825$
Weight $3$
Character 825.274
Analytic conductor $22.480$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [825,3,Mod(274,825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(825, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("825.274");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 825.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.4796218097\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.1579585536.10
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 4x^{6} + 28x^{5} - 38x^{4} + 8x^{3} + 200x^{2} - 352x + 484 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.6
Root \(1.11361 + 1.42401i\) of defining polynomial
Character \(\chi\) \(=\) 825.274
Dual form 825.3.h.a.274.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.35285 q^{2} +1.73205i q^{3} +1.53590 q^{4} +4.07525i q^{6} -6.42810 q^{7} -5.79766 q^{8} -3.00000 q^{9} +(3.26795 - 10.5034i) q^{11} +2.66025i q^{12} +7.68899 q^{13} -15.1244 q^{14} -19.7846 q^{16} +8.15051 q^{17} -7.05855 q^{18} -30.4181i q^{19} -11.1338i q^{21} +(7.68899 - 24.7128i) q^{22} -31.6603i q^{23} -10.0418i q^{24} +18.0910 q^{26} -5.19615i q^{27} -9.87291 q^{28} +6.88962i q^{29} +51.1769 q^{31} -23.3596 q^{32} +(18.1923 + 5.66025i) q^{33} +19.1769 q^{34} -4.60770 q^{36} +19.4641i q^{37} -71.5692i q^{38} +13.3177i q^{39} -47.9800i q^{41} -26.1962i q^{42} -81.8429 q^{43} +(5.01924 - 16.1321i) q^{44} -74.4918i q^{46} -30.1962i q^{47} -34.2679i q^{48} -7.67949 q^{49} +14.1171i q^{51} +11.8095 q^{52} +26.0526i q^{53} -12.2258i q^{54} +37.2679 q^{56} +52.6857 q^{57} +16.2102i q^{58} -82.7461 q^{59} -75.4148i q^{61} +120.412 q^{62} +19.2843 q^{63} +24.1769 q^{64} +(42.8038 + 13.3177i) q^{66} +34.0000i q^{67} +12.5184 q^{68} +54.8372 q^{69} -72.7321 q^{71} +17.3930 q^{72} +54.8696 q^{73} +45.7961i q^{74} -46.7191i q^{76} +(-21.0067 + 67.5167i) q^{77} +31.3346i q^{78} +24.3279i q^{79} +9.00000 q^{81} -112.890i q^{82} +0.923034 q^{83} -17.1004i q^{84} -192.564 q^{86} -11.9332 q^{87} +(-18.9465 + 60.8949i) q^{88} -44.8231 q^{89} -49.4256 q^{91} -48.6269i q^{92} +88.6410i q^{93} -71.0470i q^{94} -40.4599i q^{96} +21.2539i q^{97} -18.0687 q^{98} +(-9.80385 + 31.5101i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 40 q^{4} - 24 q^{9} + 40 q^{11} - 24 q^{14} + 8 q^{16} + 408 q^{26} + 160 q^{31} - 96 q^{34} - 120 q^{36} + 248 q^{44} - 200 q^{49} + 312 q^{56} - 80 q^{59} - 56 q^{64} + 384 q^{66} + 120 q^{69} - 568 q^{71}+ \cdots - 120 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/825\mathbb{Z}\right)^\times\).

\(n\) \(376\) \(551\) \(727\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.35285 1.17642 0.588212 0.808707i \(-0.299832\pi\)
0.588212 + 0.808707i \(0.299832\pi\)
\(3\) 1.73205i 0.577350i
\(4\) 1.53590 0.383975
\(5\) 0 0
\(6\) 4.07525i 0.679209i
\(7\) −6.42810 −0.918300 −0.459150 0.888359i \(-0.651846\pi\)
−0.459150 + 0.888359i \(0.651846\pi\)
\(8\) −5.79766 −0.724707
\(9\) −3.00000 −0.333333
\(10\) 0 0
\(11\) 3.26795 10.5034i 0.297086 0.954851i
\(12\) 2.66025i 0.221688i
\(13\) 7.68899 0.591461 0.295730 0.955271i \(-0.404437\pi\)
0.295730 + 0.955271i \(0.404437\pi\)
\(14\) −15.1244 −1.08031
\(15\) 0 0
\(16\) −19.7846 −1.23654
\(17\) 8.15051 0.479442 0.239721 0.970842i \(-0.422944\pi\)
0.239721 + 0.970842i \(0.422944\pi\)
\(18\) −7.05855 −0.392141
\(19\) 30.4181i 1.60095i −0.599364 0.800477i \(-0.704580\pi\)
0.599364 0.800477i \(-0.295420\pi\)
\(20\) 0 0
\(21\) 11.1338i 0.530181i
\(22\) 7.68899 24.7128i 0.349500 1.12331i
\(23\) 31.6603i 1.37653i −0.725458 0.688266i \(-0.758372\pi\)
0.725458 0.688266i \(-0.241628\pi\)
\(24\) 10.0418i 0.418410i
\(25\) 0 0
\(26\) 18.0910 0.695809
\(27\) 5.19615i 0.192450i
\(28\) −9.87291 −0.352604
\(29\) 6.88962i 0.237573i 0.992920 + 0.118787i \(0.0379004\pi\)
−0.992920 + 0.118787i \(0.962100\pi\)
\(30\) 0 0
\(31\) 51.1769 1.65087 0.825434 0.564498i \(-0.190930\pi\)
0.825434 + 0.564498i \(0.190930\pi\)
\(32\) −23.3596 −0.729986
\(33\) 18.1923 + 5.66025i 0.551283 + 0.171523i
\(34\) 19.1769 0.564027
\(35\) 0 0
\(36\) −4.60770 −0.127992
\(37\) 19.4641i 0.526057i 0.964788 + 0.263028i \(0.0847213\pi\)
−0.964788 + 0.263028i \(0.915279\pi\)
\(38\) 71.5692i 1.88340i
\(39\) 13.3177i 0.341480i
\(40\) 0 0
\(41\) 47.9800i 1.17024i −0.810945 0.585122i \(-0.801047\pi\)
0.810945 0.585122i \(-0.198953\pi\)
\(42\) 26.1962i 0.623718i
\(43\) −81.8429 −1.90332 −0.951662 0.307147i \(-0.900626\pi\)
−0.951662 + 0.307147i \(0.900626\pi\)
\(44\) 5.01924 16.1321i 0.114074 0.366638i
\(45\) 0 0
\(46\) 74.4918i 1.61939i
\(47\) 30.1962i 0.642471i −0.946999 0.321236i \(-0.895902\pi\)
0.946999 0.321236i \(-0.104098\pi\)
\(48\) 34.2679i 0.713916i
\(49\) −7.67949 −0.156724
\(50\) 0 0
\(51\) 14.1171i 0.276806i
\(52\) 11.8095 0.227106
\(53\) 26.0526i 0.491558i 0.969326 + 0.245779i \(0.0790437\pi\)
−0.969326 + 0.245779i \(0.920956\pi\)
\(54\) 12.2258i 0.226403i
\(55\) 0 0
\(56\) 37.2679 0.665499
\(57\) 52.6857 0.924311
\(58\) 16.2102i 0.279487i
\(59\) −82.7461 −1.40248 −0.701238 0.712927i \(-0.747369\pi\)
−0.701238 + 0.712927i \(0.747369\pi\)
\(60\) 0 0
\(61\) 75.4148i 1.23631i −0.786057 0.618154i \(-0.787881\pi\)
0.786057 0.618154i \(-0.212119\pi\)
\(62\) 120.412 1.94212
\(63\) 19.2843 0.306100
\(64\) 24.1769 0.377764
\(65\) 0 0
\(66\) 42.8038 + 13.3177i 0.648543 + 0.201784i
\(67\) 34.0000i 0.507463i 0.967275 + 0.253731i \(0.0816579\pi\)
−0.967275 + 0.253731i \(0.918342\pi\)
\(68\) 12.5184 0.184093
\(69\) 54.8372 0.794742
\(70\) 0 0
\(71\) −72.7321 −1.02440 −0.512198 0.858868i \(-0.671168\pi\)
−0.512198 + 0.858868i \(0.671168\pi\)
\(72\) 17.3930 0.241569
\(73\) 54.8696 0.751639 0.375819 0.926693i \(-0.377361\pi\)
0.375819 + 0.926693i \(0.377361\pi\)
\(74\) 45.7961i 0.618866i
\(75\) 0 0
\(76\) 46.7191i 0.614725i
\(77\) −21.0067 + 67.5167i −0.272814 + 0.876840i
\(78\) 31.3346i 0.401726i
\(79\) 24.3279i 0.307948i 0.988075 + 0.153974i \(0.0492071\pi\)
−0.988075 + 0.153974i \(0.950793\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 112.890i 1.37670i
\(83\) 0.923034 0.0111209 0.00556045 0.999985i \(-0.498230\pi\)
0.00556045 + 0.999985i \(0.498230\pi\)
\(84\) 17.1004i 0.203576i
\(85\) 0 0
\(86\) −192.564 −2.23912
\(87\) −11.9332 −0.137163
\(88\) −18.9465 + 60.8949i −0.215301 + 0.691987i
\(89\) −44.8231 −0.503630 −0.251815 0.967775i \(-0.581027\pi\)
−0.251815 + 0.967775i \(0.581027\pi\)
\(90\) 0 0
\(91\) −49.4256 −0.543139
\(92\) 48.6269i 0.528554i
\(93\) 88.6410i 0.953129i
\(94\) 71.0470i 0.755819i
\(95\) 0 0
\(96\) 40.4599i 0.421458i
\(97\) 21.2539i 0.219112i 0.993981 + 0.109556i \(0.0349429\pi\)
−0.993981 + 0.109556i \(0.965057\pi\)
\(98\) −18.0687 −0.184374
\(99\) −9.80385 + 31.5101i −0.0990288 + 0.318284i
\(100\) 0 0
\(101\) 52.3479i 0.518296i 0.965838 + 0.259148i \(0.0834417\pi\)
−0.965838 + 0.259148i \(0.916558\pi\)
\(102\) 33.2154i 0.325641i
\(103\) 4.74613i 0.0460790i −0.999735 0.0230395i \(-0.992666\pi\)
0.999735 0.0230395i \(-0.00733434\pi\)
\(104\) −44.5781 −0.428636
\(105\) 0 0
\(106\) 61.2977i 0.578281i
\(107\) 147.723 1.38059 0.690293 0.723530i \(-0.257482\pi\)
0.690293 + 0.723530i \(0.257482\pi\)
\(108\) 7.98076i 0.0738959i
\(109\) 3.56847i 0.0327383i 0.999866 + 0.0163691i \(0.00521069\pi\)
−0.999866 + 0.0163691i \(0.994789\pi\)
\(110\) 0 0
\(111\) −33.7128 −0.303719
\(112\) 127.178 1.13551
\(113\) 62.3154i 0.551463i −0.961235 0.275732i \(-0.911080\pi\)
0.961235 0.275732i \(-0.0889201\pi\)
\(114\) 123.962 1.08738
\(115\) 0 0
\(116\) 10.5818i 0.0912220i
\(117\) −23.0670 −0.197154
\(118\) −194.689 −1.64991
\(119\) −52.3923 −0.440271
\(120\) 0 0
\(121\) −99.6410 68.6489i −0.823479 0.567346i
\(122\) 177.440i 1.45442i
\(123\) 83.1038 0.675641
\(124\) 78.6025 0.633891
\(125\) 0 0
\(126\) 45.3731 0.360104
\(127\) 28.0200 0.220630 0.110315 0.993897i \(-0.464814\pi\)
0.110315 + 0.993897i \(0.464814\pi\)
\(128\) 150.323 1.17440
\(129\) 141.756i 1.09888i
\(130\) 0 0
\(131\) 113.184i 0.864001i −0.901873 0.432000i \(-0.857808\pi\)
0.901873 0.432000i \(-0.142192\pi\)
\(132\) 27.9416 + 8.69358i 0.211679 + 0.0658604i
\(133\) 195.531i 1.47016i
\(134\) 79.9969i 0.596992i
\(135\) 0 0
\(136\) −47.2539 −0.347455
\(137\) 70.7846i 0.516676i 0.966055 + 0.258338i \(0.0831748\pi\)
−0.966055 + 0.258338i \(0.916825\pi\)
\(138\) 129.024 0.934953
\(139\) 130.499i 0.938839i −0.882975 0.469420i \(-0.844463\pi\)
0.882975 0.469420i \(-0.155537\pi\)
\(140\) 0 0
\(141\) 52.3013 0.370931
\(142\) −171.128 −1.20512
\(143\) 25.1272 80.7602i 0.175715 0.564757i
\(144\) 59.3538 0.412179
\(145\) 0 0
\(146\) 129.100 0.884246
\(147\) 13.3013i 0.0904848i
\(148\) 29.8949i 0.201992i
\(149\) 125.793i 0.844248i −0.906538 0.422124i \(-0.861285\pi\)
0.906538 0.422124i \(-0.138715\pi\)
\(150\) 0 0
\(151\) 275.238i 1.82277i −0.411556 0.911384i \(-0.635015\pi\)
0.411556 0.911384i \(-0.364985\pi\)
\(152\) 176.354i 1.16022i
\(153\) −24.4515 −0.159814
\(154\) −49.4256 + 158.857i −0.320946 + 1.03154i
\(155\) 0 0
\(156\) 20.4547i 0.131120i
\(157\) 273.138i 1.73974i 0.493285 + 0.869868i \(0.335796\pi\)
−0.493285 + 0.869868i \(0.664204\pi\)
\(158\) 57.2398i 0.362277i
\(159\) −45.1244 −0.283801
\(160\) 0 0
\(161\) 203.515i 1.26407i
\(162\) 21.1756 0.130714
\(163\) 62.0666i 0.380777i 0.981709 + 0.190388i \(0.0609748\pi\)
−0.981709 + 0.190388i \(0.939025\pi\)
\(164\) 73.6924i 0.449344i
\(165\) 0 0
\(166\) 2.17176 0.0130829
\(167\) −47.9800 −0.287305 −0.143653 0.989628i \(-0.545885\pi\)
−0.143653 + 0.989628i \(0.545885\pi\)
\(168\) 64.5500i 0.384226i
\(169\) −109.879 −0.650174
\(170\) 0 0
\(171\) 91.2543i 0.533651i
\(172\) −125.702 −0.730828
\(173\) −143.017 −0.826688 −0.413344 0.910575i \(-0.635639\pi\)
−0.413344 + 0.910575i \(0.635639\pi\)
\(174\) −28.0770 −0.161362
\(175\) 0 0
\(176\) −64.6551 + 207.805i −0.367359 + 1.18071i
\(177\) 143.321i 0.809720i
\(178\) −105.462 −0.592483
\(179\) −36.6025 −0.204483 −0.102242 0.994760i \(-0.532602\pi\)
−0.102242 + 0.994760i \(0.532602\pi\)
\(180\) 0 0
\(181\) −84.1718 −0.465037 −0.232519 0.972592i \(-0.574697\pi\)
−0.232519 + 0.972592i \(0.574697\pi\)
\(182\) −116.291 −0.638962
\(183\) 130.622 0.713783
\(184\) 183.555i 0.997583i
\(185\) 0 0
\(186\) 208.559i 1.12128i
\(187\) 26.6354 85.6077i 0.142436 0.457795i
\(188\) 46.3782i 0.246693i
\(189\) 33.4014i 0.176727i
\(190\) 0 0
\(191\) 44.2346 0.231595 0.115797 0.993273i \(-0.463058\pi\)
0.115797 + 0.993273i \(0.463058\pi\)
\(192\) 41.8756i 0.218102i
\(193\) 136.127 0.705323 0.352662 0.935751i \(-0.385277\pi\)
0.352662 + 0.935751i \(0.385277\pi\)
\(194\) 50.0071i 0.257769i
\(195\) 0 0
\(196\) −11.7949 −0.0601782
\(197\) 5.96659 0.0302872 0.0151436 0.999885i \(-0.495179\pi\)
0.0151436 + 0.999885i \(0.495179\pi\)
\(198\) −23.0670 + 74.1384i −0.116500 + 0.374437i
\(199\) 234.056 1.17616 0.588081 0.808802i \(-0.299884\pi\)
0.588081 + 0.808802i \(0.299884\pi\)
\(200\) 0 0
\(201\) −58.8897 −0.292984
\(202\) 123.167i 0.609736i
\(203\) 44.2872i 0.218163i
\(204\) 21.6824i 0.106286i
\(205\) 0 0
\(206\) 11.1669i 0.0542084i
\(207\) 94.9808i 0.458844i
\(208\) −152.124 −0.731364
\(209\) −319.492 99.4048i −1.52867 0.475621i
\(210\) 0 0
\(211\) 167.469i 0.793690i 0.917886 + 0.396845i \(0.129895\pi\)
−0.917886 + 0.396845i \(0.870105\pi\)
\(212\) 40.0141i 0.188746i
\(213\) 125.976i 0.591435i
\(214\) 347.569 1.62416
\(215\) 0 0
\(216\) 30.1255i 0.139470i
\(217\) −328.970 −1.51599
\(218\) 8.39608i 0.0385141i
\(219\) 95.0370i 0.433959i
\(220\) 0 0
\(221\) 62.6692 0.283571
\(222\) −79.3212 −0.357303
\(223\) 82.2872i 0.369001i 0.982832 + 0.184500i \(0.0590667\pi\)
−0.982832 + 0.184500i \(0.940933\pi\)
\(224\) 150.158 0.670347
\(225\) 0 0
\(226\) 146.619i 0.648755i
\(227\) 40.9999 0.180616 0.0903081 0.995914i \(-0.471215\pi\)
0.0903081 + 0.995914i \(0.471215\pi\)
\(228\) 80.9199 0.354912
\(229\) −160.718 −0.701825 −0.350913 0.936408i \(-0.614129\pi\)
−0.350913 + 0.936408i \(0.614129\pi\)
\(230\) 0 0
\(231\) −116.942 36.3847i −0.506244 0.157510i
\(232\) 39.9437i 0.172171i
\(233\) 407.954 1.75087 0.875437 0.483332i \(-0.160573\pi\)
0.875437 + 0.483332i \(0.160573\pi\)
\(234\) −54.2731 −0.231936
\(235\) 0 0
\(236\) −127.090 −0.538515
\(237\) −42.1371 −0.177794
\(238\) −123.271 −0.517946
\(239\) 202.254i 0.846253i 0.906071 + 0.423127i \(0.139067\pi\)
−0.906071 + 0.423127i \(0.860933\pi\)
\(240\) 0 0
\(241\) 26.8828i 0.111547i −0.998443 0.0557734i \(-0.982238\pi\)
0.998443 0.0557734i \(-0.0177624\pi\)
\(242\) −234.440 161.520i −0.968761 0.667440i
\(243\) 15.5885i 0.0641500i
\(244\) 115.830i 0.474711i
\(245\) 0 0
\(246\) 195.531 0.794840
\(247\) 233.885i 0.946901i
\(248\) −296.706 −1.19640
\(249\) 1.59874i 0.00642065i
\(250\) 0 0
\(251\) 398.277 1.58676 0.793380 0.608726i \(-0.208319\pi\)
0.793380 + 0.608726i \(0.208319\pi\)
\(252\) 29.6187 0.117535
\(253\) −332.539 103.464i −1.31438 0.408949i
\(254\) 65.9268 0.259554
\(255\) 0 0
\(256\) 256.979 1.00383
\(257\) 337.818i 1.31447i 0.753687 + 0.657233i \(0.228273\pi\)
−0.753687 + 0.657233i \(0.771727\pi\)
\(258\) 333.531i 1.29275i
\(259\) 125.117i 0.483078i
\(260\) 0 0
\(261\) 20.6689i 0.0791910i
\(262\) 266.305i 1.01643i
\(263\) 134.529 0.511516 0.255758 0.966741i \(-0.417675\pi\)
0.255758 + 0.966741i \(0.417675\pi\)
\(264\) −105.473 32.8162i −0.399519 0.124304i
\(265\) 0 0
\(266\) 460.054i 1.72953i
\(267\) 77.6359i 0.290771i
\(268\) 52.2205i 0.194853i
\(269\) 341.870 1.27089 0.635447 0.772144i \(-0.280816\pi\)
0.635447 + 0.772144i \(0.280816\pi\)
\(270\) 0 0
\(271\) 213.298i 0.787077i 0.919308 + 0.393538i \(0.128749\pi\)
−0.919308 + 0.393538i \(0.871251\pi\)
\(272\) −161.255 −0.592848
\(273\) 85.6077i 0.313581i
\(274\) 166.545i 0.607830i
\(275\) 0 0
\(276\) 84.2243 0.305161
\(277\) −84.5789 −0.305339 −0.152669 0.988277i \(-0.548787\pi\)
−0.152669 + 0.988277i \(0.548787\pi\)
\(278\) 307.044i 1.10447i
\(279\) −153.531 −0.550289
\(280\) 0 0
\(281\) 351.148i 1.24964i 0.780771 + 0.624818i \(0.214827\pi\)
−0.780771 + 0.624818i \(0.785173\pi\)
\(282\) 123.057 0.436372
\(283\) −285.943 −1.01040 −0.505201 0.863002i \(-0.668581\pi\)
−0.505201 + 0.863002i \(0.668581\pi\)
\(284\) −111.709 −0.393342
\(285\) 0 0
\(286\) 59.1206 190.017i 0.206715 0.664394i
\(287\) 308.420i 1.07464i
\(288\) 70.0787 0.243329
\(289\) −222.569 −0.770136
\(290\) 0 0
\(291\) −36.8128 −0.126504
\(292\) 84.2742 0.288610
\(293\) 393.927 1.34446 0.672231 0.740342i \(-0.265336\pi\)
0.672231 + 0.740342i \(0.265336\pi\)
\(294\) 31.2959i 0.106449i
\(295\) 0 0
\(296\) 112.846i 0.381237i
\(297\) −54.5770 16.9808i −0.183761 0.0571743i
\(298\) 295.972i 0.993194i
\(299\) 243.435i 0.814165i
\(300\) 0 0
\(301\) 526.095 1.74782
\(302\) 647.594i 2.14435i
\(303\) −90.6691 −0.299238
\(304\) 601.810i 1.97964i
\(305\) 0 0
\(306\) −57.5307 −0.188009
\(307\) −58.2239 −0.189654 −0.0948272 0.995494i \(-0.530230\pi\)
−0.0948272 + 0.995494i \(0.530230\pi\)
\(308\) −32.2642 + 103.699i −0.104754 + 0.336684i
\(309\) 8.22055 0.0266037
\(310\) 0 0
\(311\) 207.611 0.667561 0.333780 0.942651i \(-0.391676\pi\)
0.333780 + 0.942651i \(0.391676\pi\)
\(312\) 77.2116i 0.247473i
\(313\) 376.697i 1.20351i −0.798682 0.601753i \(-0.794469\pi\)
0.798682 0.601753i \(-0.205531\pi\)
\(314\) 642.654i 2.04667i
\(315\) 0 0
\(316\) 37.3651i 0.118244i
\(317\) 246.809i 0.778577i −0.921116 0.389289i \(-0.872721\pi\)
0.921116 0.389289i \(-0.127279\pi\)
\(318\) −106.171 −0.333870
\(319\) 72.3641 + 22.5149i 0.226847 + 0.0705797i
\(320\) 0 0
\(321\) 255.863i 0.797082i
\(322\) 478.841i 1.48708i
\(323\) 247.923i 0.767564i
\(324\) 13.8231 0.0426638
\(325\) 0 0
\(326\) 146.033i 0.447955i
\(327\) −6.18078 −0.0189015
\(328\) 278.172i 0.848085i
\(329\) 194.104i 0.589982i
\(330\) 0 0
\(331\) 146.431 0.442389 0.221195 0.975230i \(-0.429004\pi\)
0.221195 + 0.975230i \(0.429004\pi\)
\(332\) 1.41769 0.00427014
\(333\) 58.3923i 0.175352i
\(334\) −112.890 −0.337993
\(335\) 0 0
\(336\) 220.278i 0.655589i
\(337\) −354.007 −1.05047 −0.525233 0.850958i \(-0.676022\pi\)
−0.525233 + 0.850958i \(0.676022\pi\)
\(338\) −258.530 −0.764881
\(339\) 107.933 0.318387
\(340\) 0 0
\(341\) 167.244 537.529i 0.490450 1.57633i
\(342\) 214.708i 0.627800i
\(343\) 364.342 1.06222
\(344\) 474.497 1.37935
\(345\) 0 0
\(346\) −336.497 −0.972536
\(347\) 529.807 1.52682 0.763411 0.645913i \(-0.223523\pi\)
0.763411 + 0.645913i \(0.223523\pi\)
\(348\) −18.3281 −0.0526671
\(349\) 342.873i 0.982445i −0.871034 0.491223i \(-0.836550\pi\)
0.871034 0.491223i \(-0.163450\pi\)
\(350\) 0 0
\(351\) 39.9532i 0.113827i
\(352\) −76.3379 + 245.354i −0.216869 + 0.697028i
\(353\) 191.990i 0.543880i 0.962314 + 0.271940i \(0.0876653\pi\)
−0.962314 + 0.271940i \(0.912335\pi\)
\(354\) 337.212i 0.952575i
\(355\) 0 0
\(356\) −68.8437 −0.193381
\(357\) 90.7461i 0.254191i
\(358\) −86.1203 −0.240559
\(359\) 601.654i 1.67592i −0.545735 0.837958i \(-0.683750\pi\)
0.545735 0.837958i \(-0.316250\pi\)
\(360\) 0 0
\(361\) −564.261 −1.56305
\(362\) −198.043 −0.547081
\(363\) 118.903 172.583i 0.327557 0.475436i
\(364\) −75.9127 −0.208551
\(365\) 0 0
\(366\) 307.335 0.839712
\(367\) 139.415i 0.379878i 0.981796 + 0.189939i \(0.0608291\pi\)
−0.981796 + 0.189939i \(0.939171\pi\)
\(368\) 626.386i 1.70214i
\(369\) 143.940i 0.390081i
\(370\) 0 0
\(371\) 167.469i 0.451398i
\(372\) 136.144i 0.365977i
\(373\) −303.629 −0.814019 −0.407009 0.913424i \(-0.633428\pi\)
−0.407009 + 0.913424i \(0.633428\pi\)
\(374\) 62.6692 201.422i 0.167565 0.538561i
\(375\) 0 0
\(376\) 175.067i 0.465604i
\(377\) 52.9742i 0.140515i
\(378\) 78.5885i 0.207906i
\(379\) −690.046 −1.82070 −0.910351 0.413837i \(-0.864188\pi\)
−0.910351 + 0.413837i \(0.864188\pi\)
\(380\) 0 0
\(381\) 48.5321i 0.127381i
\(382\) 104.077 0.272454
\(383\) 53.2576i 0.139054i −0.997580 0.0695269i \(-0.977851\pi\)
0.997580 0.0695269i \(-0.0221490\pi\)
\(384\) 260.367i 0.678039i
\(385\) 0 0
\(386\) 320.287 0.829760
\(387\) 245.529 0.634441
\(388\) 32.6438i 0.0841334i
\(389\) 587.027 1.50907 0.754533 0.656262i \(-0.227863\pi\)
0.754533 + 0.656262i \(0.227863\pi\)
\(390\) 0 0
\(391\) 258.047i 0.659967i
\(392\) 44.5231 0.113579
\(393\) 196.041 0.498831
\(394\) 14.0385 0.0356306
\(395\) 0 0
\(396\) −15.0577 + 48.3963i −0.0380245 + 0.122213i
\(397\) 485.797i 1.22367i −0.790985 0.611835i \(-0.790431\pi\)
0.790985 0.611835i \(-0.209569\pi\)
\(398\) 550.699 1.38367
\(399\) −338.669 −0.848795
\(400\) 0 0
\(401\) −166.469 −0.415135 −0.207568 0.978221i \(-0.566555\pi\)
−0.207568 + 0.978221i \(0.566555\pi\)
\(402\) −138.559 −0.344673
\(403\) 393.499 0.976424
\(404\) 80.4010i 0.199012i
\(405\) 0 0
\(406\) 104.201i 0.256653i
\(407\) 204.438 + 63.6077i 0.502306 + 0.156284i
\(408\) 81.8461i 0.200603i
\(409\) 270.161i 0.660541i 0.943886 + 0.330271i \(0.107140\pi\)
−0.943886 + 0.330271i \(0.892860\pi\)
\(410\) 0 0
\(411\) −122.603 −0.298303
\(412\) 7.28958i 0.0176932i
\(413\) 531.901 1.28790
\(414\) 223.475i 0.539796i
\(415\) 0 0
\(416\) −179.611 −0.431758
\(417\) 226.030 0.542039
\(418\) −751.717 233.885i −1.79837 0.559532i
\(419\) 356.631 0.851147 0.425574 0.904924i \(-0.360072\pi\)
0.425574 + 0.904924i \(0.360072\pi\)
\(420\) 0 0
\(421\) −462.238 −1.09795 −0.548977 0.835838i \(-0.684982\pi\)
−0.548977 + 0.835838i \(0.684982\pi\)
\(422\) 394.028i 0.933716i
\(423\) 90.5885i 0.214157i
\(424\) 151.044i 0.356236i
\(425\) 0 0
\(426\) 296.402i 0.695778i
\(427\) 484.774i 1.13530i
\(428\) 226.887 0.530110
\(429\) 139.881 + 43.5216i 0.326062 + 0.101449i
\(430\) 0 0
\(431\) 199.552i 0.462997i 0.972835 + 0.231498i \(0.0743628\pi\)
−0.972835 + 0.231498i \(0.925637\pi\)
\(432\) 102.804i 0.237972i
\(433\) 45.3693i 0.104779i −0.998627 0.0523895i \(-0.983316\pi\)
0.998627 0.0523895i \(-0.0166837\pi\)
\(434\) −774.018 −1.78345
\(435\) 0 0
\(436\) 5.48081i 0.0125707i
\(437\) −963.045 −2.20376
\(438\) 223.608i 0.510520i
\(439\) 484.630i 1.10394i −0.833864 0.551970i \(-0.813876\pi\)
0.833864 0.551970i \(-0.186124\pi\)
\(440\) 0 0
\(441\) 23.0385 0.0522414
\(442\) 147.451 0.333600
\(443\) 375.538i 0.847716i 0.905729 + 0.423858i \(0.139324\pi\)
−0.905729 + 0.423858i \(0.860676\pi\)
\(444\) −51.7795 −0.116620
\(445\) 0 0
\(446\) 193.609i 0.434102i
\(447\) 217.880 0.487427
\(448\) −155.412 −0.346901
\(449\) 385.636 0.858877 0.429439 0.903096i \(-0.358711\pi\)
0.429439 + 0.903096i \(0.358711\pi\)
\(450\) 0 0
\(451\) −503.951 156.796i −1.11741 0.347664i
\(452\) 95.7101i 0.211748i
\(453\) 476.726 1.05238
\(454\) 96.4665 0.212481
\(455\) 0 0
\(456\) −305.454 −0.669855
\(457\) −378.368 −0.827939 −0.413970 0.910291i \(-0.635858\pi\)
−0.413970 + 0.910291i \(0.635858\pi\)
\(458\) −378.145 −0.825644
\(459\) 42.3513i 0.0922686i
\(460\) 0 0
\(461\) 224.522i 0.487033i 0.969897 + 0.243516i \(0.0783010\pi\)
−0.969897 + 0.243516i \(0.921699\pi\)
\(462\) −275.148 85.6077i −0.595557 0.185298i
\(463\) 52.3820i 0.113136i −0.998399 0.0565680i \(-0.981984\pi\)
0.998399 0.0565680i \(-0.0180158\pi\)
\(464\) 136.308i 0.293768i
\(465\) 0 0
\(466\) 959.854 2.05977
\(467\) 513.387i 1.09933i −0.835385 0.549665i \(-0.814755\pi\)
0.835385 0.549665i \(-0.185245\pi\)
\(468\) −35.4285 −0.0757020
\(469\) 218.556i 0.466003i
\(470\) 0 0
\(471\) −473.090 −1.00444
\(472\) 479.734 1.01639
\(473\) −267.459 + 859.626i −0.565451 + 1.81739i
\(474\) −99.1422 −0.209161
\(475\) 0 0
\(476\) −80.4693 −0.169053
\(477\) 78.1577i 0.163853i
\(478\) 475.874i 0.995553i
\(479\) 238.730i 0.498392i 0.968453 + 0.249196i \(0.0801663\pi\)
−0.968453 + 0.249196i \(0.919834\pi\)
\(480\) 0 0
\(481\) 149.659i 0.311142i
\(482\) 63.2511i 0.131226i
\(483\) −352.499 −0.729812
\(484\) −153.038 105.438i −0.316195 0.217846i
\(485\) 0 0
\(486\) 36.6773i 0.0754677i
\(487\) 593.251i 1.21817i −0.793103 0.609087i \(-0.791536\pi\)
0.793103 0.609087i \(-0.208464\pi\)
\(488\) 437.229i 0.895962i
\(489\) −107.503 −0.219842
\(490\) 0 0
\(491\) 858.935i 1.74936i −0.484703 0.874679i \(-0.661072\pi\)
0.484703 0.874679i \(-0.338928\pi\)
\(492\) 127.639 0.259429
\(493\) 56.1539i 0.113902i
\(494\) 550.295i 1.11396i
\(495\) 0 0
\(496\) −1012.52 −2.04136
\(497\) 467.529 0.940702
\(498\) 3.76160i 0.00755341i
\(499\) 803.692 1.61061 0.805303 0.592864i \(-0.202003\pi\)
0.805303 + 0.592864i \(0.202003\pi\)
\(500\) 0 0
\(501\) 83.1038i 0.165876i
\(502\) 937.085 1.86670
\(503\) −752.302 −1.49563 −0.747815 0.663907i \(-0.768897\pi\)
−0.747815 + 0.663907i \(0.768897\pi\)
\(504\) −111.804 −0.221833
\(505\) 0 0
\(506\) −782.414 243.435i −1.54627 0.481098i
\(507\) 190.317i 0.375378i
\(508\) 43.0359 0.0847163
\(509\) 249.268 0.489721 0.244860 0.969558i \(-0.421258\pi\)
0.244860 + 0.969558i \(0.421258\pi\)
\(510\) 0 0
\(511\) −352.708 −0.690230
\(512\) 3.34215 0.00652764
\(513\) −158.057 −0.308104
\(514\) 794.835i 1.54637i
\(515\) 0 0
\(516\) 217.723i 0.421944i
\(517\) −317.161 98.6795i −0.613464 0.190869i
\(518\) 294.382i 0.568305i
\(519\) 247.713i 0.477288i
\(520\) 0 0
\(521\) 475.864 0.913367 0.456683 0.889629i \(-0.349037\pi\)
0.456683 + 0.889629i \(0.349037\pi\)
\(522\) 48.6307i 0.0931623i
\(523\) 362.833 0.693754 0.346877 0.937911i \(-0.387242\pi\)
0.346877 + 0.937911i \(0.387242\pi\)
\(524\) 173.839i 0.331754i
\(525\) 0 0
\(526\) 316.526 0.601760
\(527\) 417.118 0.791495
\(528\) −359.929 111.986i −0.681683 0.212095i
\(529\) −473.372 −0.894843
\(530\) 0 0
\(531\) 248.238 0.467492
\(532\) 300.315i 0.564503i
\(533\) 368.918i 0.692154i
\(534\) 182.665i 0.342070i
\(535\) 0 0
\(536\) 197.120i 0.367762i
\(537\) 63.3975i 0.118059i
\(538\) 804.370 1.49511
\(539\) −25.0962 + 80.6604i −0.0465606 + 0.149648i
\(540\) 0 0
\(541\) 830.667i 1.53543i 0.640792 + 0.767715i \(0.278606\pi\)
−0.640792 + 0.767715i \(0.721394\pi\)
\(542\) 501.857i 0.925936i
\(543\) 145.790i 0.268489i
\(544\) −190.392 −0.349986
\(545\) 0 0
\(546\) 201.422i 0.368905i
\(547\) −456.091 −0.833804 −0.416902 0.908952i \(-0.636884\pi\)
−0.416902 + 0.908952i \(0.636884\pi\)
\(548\) 108.718i 0.198390i
\(549\) 226.244i 0.412103i
\(550\) 0 0
\(551\) 209.569 0.380343
\(552\) −317.927 −0.575955
\(553\) 156.382i 0.282788i
\(554\) −199.001 −0.359208
\(555\) 0 0
\(556\) 200.433i 0.360490i
\(557\) 338.810 0.608277 0.304138 0.952628i \(-0.401631\pi\)
0.304138 + 0.952628i \(0.401631\pi\)
\(558\) −361.235 −0.647374
\(559\) −629.290 −1.12574
\(560\) 0 0
\(561\) 148.277 + 46.1339i 0.264308 + 0.0822352i
\(562\) 826.197i 1.47010i
\(563\) 447.041 0.794034 0.397017 0.917811i \(-0.370045\pi\)
0.397017 + 0.917811i \(0.370045\pi\)
\(564\) 80.3294 0.142428
\(565\) 0 0
\(566\) −672.782 −1.18866
\(567\) −57.8529 −0.102033
\(568\) 421.676 0.742387
\(569\) 522.893i 0.918969i −0.888186 0.459485i \(-0.848034\pi\)
0.888186 0.459485i \(-0.151966\pi\)
\(570\) 0 0
\(571\) 904.574i 1.58419i −0.610396 0.792096i \(-0.708990\pi\)
0.610396 0.792096i \(-0.291010\pi\)
\(572\) 38.5929 124.039i 0.0674701 0.216852i
\(573\) 76.6166i 0.133711i
\(574\) 725.667i 1.26423i
\(575\) 0 0
\(576\) −72.5307 −0.125921
\(577\) 237.674i 0.411914i −0.978561 0.205957i \(-0.933969\pi\)
0.978561 0.205957i \(-0.0660307\pi\)
\(578\) −523.672 −0.906007
\(579\) 235.780i 0.407219i
\(580\) 0 0
\(581\) −5.93336 −0.0102123
\(582\) −86.6149 −0.148823
\(583\) 273.639 + 85.1384i 0.469364 + 0.146035i
\(584\) −318.115 −0.544718
\(585\) 0 0
\(586\) 926.851 1.58166
\(587\) 578.515i 0.985546i 0.870158 + 0.492773i \(0.164017\pi\)
−0.870158 + 0.492773i \(0.835983\pi\)
\(588\) 20.4294i 0.0347439i
\(589\) 1556.71i 2.64296i
\(590\) 0 0
\(591\) 10.3344i 0.0174863i
\(592\) 385.090i 0.650489i
\(593\) −333.857 −0.562997 −0.281499 0.959562i \(-0.590831\pi\)
−0.281499 + 0.959562i \(0.590831\pi\)
\(594\) −128.412 39.9532i −0.216181 0.0672612i
\(595\) 0 0
\(596\) 193.205i 0.324170i
\(597\) 405.397i 0.679058i
\(598\) 572.767i 0.957804i
\(599\) 846.483 1.41316 0.706580 0.707633i \(-0.250237\pi\)
0.706580 + 0.707633i \(0.250237\pi\)
\(600\) 0 0
\(601\) 455.011i 0.757089i 0.925583 + 0.378545i \(0.123575\pi\)
−0.925583 + 0.378545i \(0.876425\pi\)
\(602\) 1237.82 2.05618
\(603\) 102.000i 0.169154i
\(604\) 422.738i 0.699897i
\(605\) 0 0
\(606\) −213.331 −0.352031
\(607\) 726.557 1.19696 0.598482 0.801137i \(-0.295771\pi\)
0.598482 + 0.801137i \(0.295771\pi\)
\(608\) 710.554i 1.16867i
\(609\) 76.7077 0.125957
\(610\) 0 0
\(611\) 232.178i 0.379997i
\(612\) −37.5551 −0.0613645
\(613\) −574.532 −0.937247 −0.468624 0.883398i \(-0.655250\pi\)
−0.468624 + 0.883398i \(0.655250\pi\)
\(614\) −136.992 −0.223114
\(615\) 0 0
\(616\) 121.790 391.439i 0.197711 0.635452i
\(617\) 278.946i 0.452101i 0.974116 + 0.226050i \(0.0725814\pi\)
−0.974116 + 0.226050i \(0.927419\pi\)
\(618\) 19.3417 0.0312973
\(619\) 593.061 0.958096 0.479048 0.877789i \(-0.340982\pi\)
0.479048 + 0.877789i \(0.340982\pi\)
\(620\) 0 0
\(621\) −164.512 −0.264914
\(622\) 488.478 0.785335
\(623\) 288.127 0.462484
\(624\) 263.486i 0.422253i
\(625\) 0 0
\(626\) 886.312i 1.41583i
\(627\) 172.174 553.377i 0.274600 0.882579i
\(628\) 419.513i 0.668014i
\(629\) 158.642i 0.252214i
\(630\) 0 0
\(631\) −361.664 −0.573160 −0.286580 0.958056i \(-0.592518\pi\)
−0.286580 + 0.958056i \(0.592518\pi\)
\(632\) 141.045i 0.223172i
\(633\) −290.064 −0.458237
\(634\) 580.704i 0.915937i
\(635\) 0 0
\(636\) −69.3064 −0.108972
\(637\) −59.0475 −0.0926963
\(638\) 170.262 + 52.9742i 0.266868 + 0.0830317i
\(639\) 218.196 0.341465
\(640\) 0 0
\(641\) 784.382 1.22368 0.611842 0.790980i \(-0.290429\pi\)
0.611842 + 0.790980i \(0.290429\pi\)
\(642\) 602.008i 0.937706i
\(643\) 362.764i 0.564174i 0.959389 + 0.282087i \(0.0910267\pi\)
−0.959389 + 0.282087i \(0.908973\pi\)
\(644\) 312.579i 0.485371i
\(645\) 0 0
\(646\) 583.325i 0.902981i
\(647\) 921.727i 1.42462i −0.701867 0.712308i \(-0.747650\pi\)
0.701867 0.712308i \(-0.252350\pi\)
\(648\) −52.1789 −0.0805230
\(649\) −270.410 + 869.112i −0.416657 + 1.33916i
\(650\) 0 0
\(651\) 569.794i 0.875259i
\(652\) 95.3281i 0.146209i
\(653\) 26.8653i 0.0411414i 0.999788 + 0.0205707i \(0.00654832\pi\)
−0.999788 + 0.0205707i \(0.993452\pi\)
\(654\) −14.5424 −0.0222361
\(655\) 0 0
\(656\) 949.266i 1.44705i
\(657\) −164.609 −0.250546
\(658\) 456.697i 0.694069i
\(659\) 320.820i 0.486828i 0.969922 + 0.243414i \(0.0782674\pi\)
−0.969922 + 0.243414i \(0.921733\pi\)
\(660\) 0 0
\(661\) 331.969 0.502222 0.251111 0.967958i \(-0.419204\pi\)
0.251111 + 0.967958i \(0.419204\pi\)
\(662\) 344.530 0.520437
\(663\) 108.546i 0.163720i
\(664\) −5.35144 −0.00805939
\(665\) 0 0
\(666\) 137.388i 0.206289i
\(667\) 218.127 0.327027
\(668\) −73.6924 −0.110318
\(669\) −142.526 −0.213043
\(670\) 0 0
\(671\) −792.109 246.452i −1.18049 0.367290i
\(672\) 260.081i 0.387025i
\(673\) −797.019 −1.18428 −0.592139 0.805836i \(-0.701716\pi\)
−0.592139 + 0.805836i \(0.701716\pi\)
\(674\) −832.925 −1.23579
\(675\) 0 0
\(676\) −168.764 −0.249650
\(677\) −534.175 −0.789033 −0.394516 0.918889i \(-0.629088\pi\)
−0.394516 + 0.918889i \(0.629088\pi\)
\(678\) 253.951 0.374559
\(679\) 136.622i 0.201211i
\(680\) 0 0
\(681\) 71.0139i 0.104279i
\(682\) 393.499 1264.73i 0.576978 1.85444i
\(683\) 843.097i 1.23440i −0.786805 0.617201i \(-0.788266\pi\)
0.786805 0.617201i \(-0.211734\pi\)
\(684\) 140.157i 0.204908i
\(685\) 0 0
\(686\) 857.241 1.24962
\(687\) 278.372i 0.405199i
\(688\) 1619.23 2.35353
\(689\) 200.318i 0.290737i
\(690\) 0 0
\(691\) −193.615 −0.280196 −0.140098 0.990138i \(-0.544742\pi\)
−0.140098 + 0.990138i \(0.544742\pi\)
\(692\) −219.660 −0.317427
\(693\) 63.0201 202.550i 0.0909382 0.292280i
\(694\) 1246.56 1.79619
\(695\) 0 0
\(696\) 69.1845 0.0994030
\(697\) 391.061i 0.561064i
\(698\) 806.729i 1.15577i
\(699\) 706.597i 1.01087i
\(700\) 0 0
\(701\) 448.863i 0.640318i −0.947364 0.320159i \(-0.896264\pi\)
0.947364 0.320159i \(-0.103736\pi\)
\(702\) 94.0038i 0.133909i
\(703\) 592.061 0.842192
\(704\) 79.0089 253.939i 0.112229 0.360708i
\(705\) 0 0
\(706\) 451.723i 0.639834i
\(707\) 336.497i 0.475951i
\(708\) 220.126i 0.310912i
\(709\) 311.031 0.438689 0.219345 0.975647i \(-0.429608\pi\)
0.219345 + 0.975647i \(0.429608\pi\)
\(710\) 0 0
\(711\) 72.9836i 0.102649i
\(712\) 259.869 0.364985
\(713\) 1620.27i 2.27247i
\(714\) 213.512i 0.299036i
\(715\) 0 0
\(716\) −56.2178 −0.0785165
\(717\) −350.315 −0.488584
\(718\) 1415.60i 1.97159i
\(719\) −486.014 −0.675958 −0.337979 0.941154i \(-0.609743\pi\)
−0.337979 + 0.941154i \(0.609743\pi\)
\(720\) 0 0
\(721\) 30.5086i 0.0423143i
\(722\) −1327.62 −1.83881
\(723\) 46.5623 0.0644016
\(724\) −129.279 −0.178563
\(725\) 0 0
\(726\) 279.762 406.062i 0.385347 0.559315i
\(727\) 38.8616i 0.0534547i −0.999643 0.0267273i \(-0.991491\pi\)
0.999643 0.0267273i \(-0.00850859\pi\)
\(728\) 286.553 0.393617
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) −667.061 −0.912533
\(732\) 200.623 0.274075
\(733\) −175.562 −0.239511 −0.119756 0.992803i \(-0.538211\pi\)
−0.119756 + 0.992803i \(0.538211\pi\)
\(734\) 328.023i 0.446898i
\(735\) 0 0
\(736\) 739.570i 1.00485i
\(737\) 357.114 + 111.110i 0.484551 + 0.150760i
\(738\) 338.669i 0.458901i
\(739\) 494.527i 0.669184i 0.942363 + 0.334592i \(0.108598\pi\)
−0.942363 + 0.334592i \(0.891402\pi\)
\(740\) 0 0
\(741\) 405.100 0.546694
\(742\) 394.028i 0.531035i
\(743\) −1150.84 −1.54892 −0.774458 0.632625i \(-0.781977\pi\)
−0.774458 + 0.632625i \(0.781977\pi\)
\(744\) 513.910i 0.690740i
\(745\) 0 0
\(746\) −714.393 −0.957632
\(747\) −2.76910 −0.00370696
\(748\) 40.9093 131.485i 0.0546916 0.175782i
\(749\) −949.577 −1.26779
\(750\) 0 0
\(751\) 1343.73 1.78926 0.894628 0.446813i \(-0.147441\pi\)
0.894628 + 0.446813i \(0.147441\pi\)
\(752\) 597.419i 0.794440i
\(753\) 689.836i 0.916117i
\(754\) 124.640i 0.165306i
\(755\) 0 0
\(756\) 51.3012i 0.0678587i
\(757\) 1034.58i 1.36669i −0.730097 0.683343i \(-0.760525\pi\)
0.730097 0.683343i \(-0.239475\pi\)
\(758\) −1623.57 −2.14192
\(759\) 179.205 575.974i 0.236107 0.758859i
\(760\) 0 0
\(761\) 798.527i 1.04931i −0.851314 0.524656i \(-0.824194\pi\)
0.851314 0.524656i \(-0.175806\pi\)
\(762\) 114.189i 0.149854i
\(763\) 22.9385i 0.0300636i
\(764\) 67.9399 0.0889266
\(765\) 0 0
\(766\) 125.307i 0.163586i
\(767\) −636.234 −0.829510
\(768\) 445.101i 0.579559i
\(769\) 261.311i 0.339806i 0.985461 + 0.169903i \(0.0543455\pi\)
−0.985461 + 0.169903i \(0.945655\pi\)
\(770\) 0 0
\(771\) −585.118 −0.758908
\(772\) 209.078 0.270826
\(773\) 327.734i 0.423977i −0.977272 0.211989i \(-0.932006\pi\)
0.977272 0.211989i \(-0.0679940\pi\)
\(774\) 577.692 0.746372
\(775\) 0 0
\(776\) 123.223i 0.158792i
\(777\) 216.709 0.278905
\(778\) 1381.19 1.77530
\(779\) −1459.46 −1.87351
\(780\) 0 0
\(781\) −237.685 + 763.931i −0.304334 + 0.978144i
\(782\) 607.146i 0.776402i
\(783\) 35.7995 0.0457210
\(784\) 151.936 0.193796
\(785\) 0 0
\(786\) 461.254 0.586837
\(787\) −289.388 −0.367711 −0.183855 0.982953i \(-0.558858\pi\)
−0.183855 + 0.982953i \(0.558858\pi\)
\(788\) 9.16407 0.0116295
\(789\) 233.010i 0.295324i
\(790\) 0 0
\(791\) 400.570i 0.506409i
\(792\) 56.8394 182.685i 0.0717669 0.230662i
\(793\) 579.864i 0.731228i
\(794\) 1143.01i 1.43956i
\(795\) 0 0
\(796\) 359.487 0.451617
\(797\) 113.681i 0.142636i −0.997454 0.0713180i \(-0.977279\pi\)
0.997454 0.0713180i \(-0.0227205\pi\)
\(798\) −796.837 −0.998543
\(799\) 246.114i 0.308028i
\(800\) 0 0
\(801\) 134.469 0.167877
\(802\) −391.677 −0.488375
\(803\) 179.311 576.315i 0.223302 0.717703i
\(804\) −90.4486 −0.112498
\(805\) 0 0
\(806\) 925.843 1.14869
\(807\) 592.137i 0.733751i
\(808\) 303.495i 0.375613i
\(809\) 854.163i 1.05583i 0.849299 + 0.527913i \(0.177025\pi\)
−0.849299 + 0.527913i \(0.822975\pi\)
\(810\) 0 0
\(811\) 486.533i 0.599917i 0.953952 + 0.299959i \(0.0969729\pi\)
−0.953952 + 0.299959i \(0.903027\pi\)
\(812\) 68.0206i 0.0837692i
\(813\) −369.443 −0.454419
\(814\) 481.013 + 149.659i 0.590925 + 0.183857i
\(815\) 0 0
\(816\) 279.301i 0.342281i
\(817\) 2489.51i 3.04713i
\(818\) 635.649i 0.777077i
\(819\) 148.277 0.181046
\(820\) 0 0
\(821\) 527.104i 0.642027i 0.947075 + 0.321014i \(0.104024\pi\)
−0.947075 + 0.321014i \(0.895976\pi\)
\(822\) −288.465 −0.350931
\(823\) 314.805i 0.382509i −0.981540 0.191255i \(-0.938744\pi\)
0.981540 0.191255i \(-0.0612556\pi\)
\(824\) 27.5165i 0.0333938i
\(825\) 0 0
\(826\) 1251.48 1.51511
\(827\) −111.652 −0.135008 −0.0675040 0.997719i \(-0.521504\pi\)
−0.0675040 + 0.997719i \(0.521504\pi\)
\(828\) 145.881i 0.176185i
\(829\) 695.395 0.838836 0.419418 0.907793i \(-0.362234\pi\)
0.419418 + 0.907793i \(0.362234\pi\)
\(830\) 0 0
\(831\) 146.495i 0.176288i
\(832\) 185.896 0.223433
\(833\) −62.5918 −0.0751402
\(834\) 531.815 0.637668
\(835\) 0 0
\(836\) −490.708 152.676i −0.586971 0.182626i
\(837\) 265.923i 0.317710i
\(838\) 839.098 1.00131
\(839\) 383.968 0.457650 0.228825 0.973468i \(-0.426512\pi\)
0.228825 + 0.973468i \(0.426512\pi\)
\(840\) 0 0
\(841\) 793.533 0.943559
\(842\) −1087.58 −1.29166
\(843\) −608.205 −0.721477
\(844\) 257.215i 0.304757i
\(845\) 0 0
\(846\) 213.141i 0.251940i
\(847\) 640.503 + 441.282i 0.756202 + 0.520994i
\(848\) 515.440i 0.607830i
\(849\) 495.269i 0.583355i
\(850\) 0 0
\(851\) 616.238 0.724134
\(852\) 193.486i 0.227096i
\(853\) 570.527 0.668847 0.334424 0.942423i \(-0.391458\pi\)
0.334424 + 0.942423i \(0.391458\pi\)
\(854\) 1140.60i 1.33560i
\(855\) 0 0
\(856\) −856.446 −1.00052
\(857\) −315.553 −0.368207 −0.184103 0.982907i \(-0.558938\pi\)
−0.184103 + 0.982907i \(0.558938\pi\)
\(858\) 329.118 + 102.400i 0.383588 + 0.119347i
\(859\) 107.923 0.125638 0.0628190 0.998025i \(-0.479991\pi\)
0.0628190 + 0.998025i \(0.479991\pi\)
\(860\) 0 0
\(861\) −534.200 −0.620441
\(862\) 469.515i 0.544681i
\(863\) 1431.55i 1.65881i 0.558651 + 0.829403i \(0.311319\pi\)
−0.558651 + 0.829403i \(0.688681\pi\)
\(864\) 121.380i 0.140486i
\(865\) 0 0
\(866\) 106.747i 0.123265i
\(867\) 385.501i 0.444638i
\(868\) −505.265 −0.582103
\(869\) 255.524 + 79.5022i 0.294044 + 0.0914870i
\(870\) 0 0
\(871\) 261.426i 0.300144i
\(872\) 20.6888i 0.0237257i
\(873\) 63.7616i 0.0730373i
\(874\) −2265.90 −2.59256
\(875\) 0 0
\(876\) 145.967i 0.166629i
\(877\) 567.758 0.647386 0.323693 0.946162i \(-0.395075\pi\)
0.323693 + 0.946162i \(0.395075\pi\)
\(878\) 1140.26i 1.29870i
\(879\) 682.302i 0.776225i
\(880\) 0 0
\(881\) 488.641 0.554644 0.277322 0.960777i \(-0.410553\pi\)
0.277322 + 0.960777i \(0.410553\pi\)
\(882\) 54.2061 0.0614581
\(883\) 840.144i 0.951465i 0.879590 + 0.475732i \(0.157817\pi\)
−0.879590 + 0.475732i \(0.842183\pi\)
\(884\) 96.2535 0.108884
\(885\) 0 0
\(886\) 883.585i 0.997274i
\(887\) 981.439 1.10647 0.553235 0.833025i \(-0.313393\pi\)
0.553235 + 0.833025i \(0.313393\pi\)
\(888\) 195.455 0.220107
\(889\) −180.115 −0.202605
\(890\) 0 0
\(891\) 29.4115 94.5302i 0.0330096 0.106095i
\(892\) 126.385i 0.141687i
\(893\) −918.510 −1.02857
\(894\) 512.638 0.573421
\(895\) 0 0
\(896\) −966.291 −1.07845
\(897\) 421.642 0.470059
\(898\) 907.343 1.01040
\(899\) 352.589i 0.392202i
\(900\) 0 0
\(901\) 212.342i 0.235673i
\(902\) −1185.72 368.918i −1.31455 0.409000i
\(903\) 911.223i 1.00911i
\(904\) 361.283i 0.399650i
\(905\) 0 0
\(906\) 1121.67 1.23804
\(907\) 438.610i 0.483583i −0.970328 0.241792i \(-0.922265\pi\)
0.970328 0.241792i \(-0.0777351\pi\)
\(908\) 62.9716 0.0693520
\(909\) 157.044i 0.172765i
\(910\) 0 0
\(911\) −170.042 −0.186654 −0.0933272 0.995635i \(-0.529750\pi\)
−0.0933272 + 0.995635i \(0.529750\pi\)
\(912\) −1042.37 −1.14295
\(913\) 3.01643 9.69496i 0.00330386 0.0106188i
\(914\) −890.243 −0.974008
\(915\) 0 0
\(916\) −246.846 −0.269483
\(917\) 727.559i 0.793412i
\(918\) 99.6462i 0.108547i
\(919\) 1089.73i 1.18578i −0.805285 0.592888i \(-0.797988\pi\)
0.805285 0.592888i \(-0.202012\pi\)
\(920\) 0 0
\(921\) 100.847i 0.109497i
\(922\) 528.267i 0.572957i
\(923\) −559.236 −0.605890
\(924\) −179.611 55.8832i −0.194385 0.0604796i
\(925\) 0 0
\(926\) 123.247i 0.133096i
\(927\) 14.2384i 0.0153597i
\(928\) 160.939i 0.173425i
\(929\) −769.446 −0.828252 −0.414126 0.910220i \(-0.635913\pi\)
−0.414126 + 0.910220i \(0.635913\pi\)
\(930\) 0 0
\(931\) 233.596i 0.250908i
\(932\) 626.576 0.672291
\(933\) 359.594i 0.385417i
\(934\) 1207.92i 1.29328i
\(935\) 0 0
\(936\) 133.734 0.142879
\(937\) −1606.78 −1.71481 −0.857406 0.514641i \(-0.827925\pi\)
−0.857406 + 0.514641i \(0.827925\pi\)
\(938\) 514.228i 0.548218i
\(939\) 652.459 0.694844
\(940\) 0 0
\(941\) 1279.34i 1.35955i 0.733419 + 0.679777i \(0.237923\pi\)
−0.733419 + 0.679777i \(0.762077\pi\)
\(942\) −1113.11 −1.18164
\(943\) −1519.06 −1.61088
\(944\) 1637.10 1.73422
\(945\) 0 0
\(946\) −629.290 + 2022.57i −0.665211 + 2.13802i
\(947\) 985.800i 1.04097i 0.853870 + 0.520486i \(0.174249\pi\)
−0.853870 + 0.520486i \(0.825751\pi\)
\(948\) −64.7183 −0.0682682
\(949\) 421.892 0.444565
\(950\) 0 0
\(951\) 427.486 0.449512
\(952\) 303.753 0.319068
\(953\) 761.038 0.798571 0.399285 0.916827i \(-0.369258\pi\)
0.399285 + 0.916827i \(0.369258\pi\)
\(954\) 183.893i 0.192760i
\(955\) 0 0
\(956\) 310.642i 0.324940i
\(957\) −38.9970 + 125.338i −0.0407492 + 0.130970i
\(958\) 561.695i 0.586320i
\(959\) 455.011i 0.474464i
\(960\) 0 0
\(961\) 1658.08 1.72537
\(962\) 352.126i 0.366035i
\(963\) −443.168 −0.460195
\(964\) 41.2892i 0.0428311i
\(965\) 0 0
\(966\) −829.377 −0.858568
\(967\) −702.938 −0.726926 −0.363463 0.931609i \(-0.618406\pi\)
−0.363463 + 0.931609i \(0.618406\pi\)
\(968\) 577.685 + 398.003i 0.596782 + 0.411160i
\(969\) 429.415 0.443153
\(970\) 0 0
\(971\) −1289.42 −1.32793 −0.663963 0.747766i \(-0.731127\pi\)
−0.663963 + 0.747766i \(0.731127\pi\)
\(972\) 23.9423i 0.0246320i
\(973\) 838.859i 0.862136i
\(974\) 1395.83i 1.43309i
\(975\) 0 0
\(976\) 1492.05i 1.52874i
\(977\) 690.526i 0.706782i 0.935476 + 0.353391i \(0.114971\pi\)
−0.935476 + 0.353391i \(0.885029\pi\)
\(978\) −252.937 −0.258627
\(979\) −146.480 + 470.793i −0.149622 + 0.480892i
\(980\) 0 0
\(981\) 10.7054i 0.0109128i
\(982\) 2020.94i 2.05799i
\(983\) 1080.40i 1.09908i 0.835467 + 0.549540i \(0.185197\pi\)
−0.835467 + 0.549540i \(0.814803\pi\)
\(984\) −481.808 −0.489642
\(985\) 0 0
\(986\) 132.122i 0.133998i
\(987\) −336.198 −0.340626
\(988\) 359.223i 0.363586i
\(989\) 2591.17i 2.61999i
\(990\) 0 0
\(991\) −686.561 −0.692796 −0.346398 0.938088i \(-0.612595\pi\)
−0.346398 + 0.938088i \(0.612595\pi\)
\(992\) −1195.47 −1.20511
\(993\) 253.626i 0.255413i
\(994\) 1100.03 1.10667
\(995\) 0 0
\(996\) 2.45551i 0.00246537i
\(997\) −1413.50 −1.41775 −0.708876 0.705333i \(-0.750797\pi\)
−0.708876 + 0.705333i \(0.750797\pi\)
\(998\) 1890.97 1.89476
\(999\) 101.138 0.101240
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 825.3.h.a.274.6 8
5.2 odd 4 33.3.c.a.10.3 yes 4
5.3 odd 4 825.3.b.a.76.2 4
5.4 even 2 inner 825.3.h.a.274.3 8
11.10 odd 2 inner 825.3.h.a.274.4 8
15.2 even 4 99.3.c.b.10.2 4
20.7 even 4 528.3.j.c.241.2 4
40.27 even 4 2112.3.j.d.769.4 4
40.37 odd 4 2112.3.j.a.769.1 4
55.2 even 20 363.3.g.e.40.2 16
55.7 even 20 363.3.g.e.94.3 16
55.17 even 20 363.3.g.e.118.3 16
55.27 odd 20 363.3.g.e.118.2 16
55.32 even 4 33.3.c.a.10.2 4
55.37 odd 20 363.3.g.e.94.2 16
55.42 odd 20 363.3.g.e.40.3 16
55.43 even 4 825.3.b.a.76.3 4
55.47 odd 20 363.3.g.e.112.3 16
55.52 even 20 363.3.g.e.112.2 16
55.54 odd 2 inner 825.3.h.a.274.5 8
60.47 odd 4 1584.3.j.f.1297.4 4
165.32 odd 4 99.3.c.b.10.3 4
220.87 odd 4 528.3.j.c.241.1 4
440.197 even 4 2112.3.j.a.769.2 4
440.307 odd 4 2112.3.j.d.769.3 4
660.527 even 4 1584.3.j.f.1297.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.3.c.a.10.2 4 55.32 even 4
33.3.c.a.10.3 yes 4 5.2 odd 4
99.3.c.b.10.2 4 15.2 even 4
99.3.c.b.10.3 4 165.32 odd 4
363.3.g.e.40.2 16 55.2 even 20
363.3.g.e.40.3 16 55.42 odd 20
363.3.g.e.94.2 16 55.37 odd 20
363.3.g.e.94.3 16 55.7 even 20
363.3.g.e.112.2 16 55.52 even 20
363.3.g.e.112.3 16 55.47 odd 20
363.3.g.e.118.2 16 55.27 odd 20
363.3.g.e.118.3 16 55.17 even 20
528.3.j.c.241.1 4 220.87 odd 4
528.3.j.c.241.2 4 20.7 even 4
825.3.b.a.76.2 4 5.3 odd 4
825.3.b.a.76.3 4 55.43 even 4
825.3.h.a.274.3 8 5.4 even 2 inner
825.3.h.a.274.4 8 11.10 odd 2 inner
825.3.h.a.274.5 8 55.54 odd 2 inner
825.3.h.a.274.6 8 1.1 even 1 trivial
1584.3.j.f.1297.3 4 660.527 even 4
1584.3.j.f.1297.4 4 60.47 odd 4
2112.3.j.a.769.1 4 40.37 odd 4
2112.3.j.a.769.2 4 440.197 even 4
2112.3.j.d.769.3 4 440.307 odd 4
2112.3.j.d.769.4 4 40.27 even 4