Properties

Label 825.3.b.a.76.2
Level $825$
Weight $3$
Character 825.76
Analytic conductor $22.480$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [825,3,Mod(76,825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(825, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("825.76");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 825.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.4796218097\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.0.39744.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} + 12x^{2} + 4x + 22 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 76.2
Root \(1.36603 + 3.21405i\) of defining polynomial
Character \(\chi\) \(=\) 825.76
Dual form 825.3.b.a.76.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.35285i q^{2} -1.73205 q^{3} -1.53590 q^{4} +4.07525i q^{6} +6.42810i q^{7} -5.79766i q^{8} +3.00000 q^{9} +(3.26795 - 10.5034i) q^{11} +2.66025 q^{12} +7.68899i q^{13} +15.1244 q^{14} -19.7846 q^{16} -8.15051i q^{17} -7.05855i q^{18} +30.4181i q^{19} -11.1338i q^{21} +(-24.7128 - 7.68899i) q^{22} +31.6603 q^{23} +10.0418i q^{24} +18.0910 q^{26} -5.19615 q^{27} -9.87291i q^{28} -6.88962i q^{29} +51.1769 q^{31} +23.3596i q^{32} +(-5.66025 + 18.1923i) q^{33} -19.1769 q^{34} -4.60770 q^{36} +19.4641 q^{37} +71.5692 q^{38} -13.3177i q^{39} -47.9800i q^{41} -26.1962 q^{42} -81.8429i q^{43} +(-5.01924 + 16.1321i) q^{44} -74.4918i q^{46} -30.1962 q^{47} +34.2679 q^{48} +7.67949 q^{49} +14.1171i q^{51} -11.8095i q^{52} -26.0526 q^{53} +12.2258i q^{54} +37.2679 q^{56} -52.6857i q^{57} -16.2102 q^{58} +82.7461 q^{59} -75.4148i q^{61} -120.412i q^{62} +19.2843i q^{63} -24.1769 q^{64} +(42.8038 + 13.3177i) q^{66} +34.0000 q^{67} +12.5184i q^{68} -54.8372 q^{69} -72.7321 q^{71} -17.3930i q^{72} +54.8696i q^{73} -45.7961i q^{74} -46.7191i q^{76} +(67.5167 + 21.0067i) q^{77} -31.3346 q^{78} -24.3279i q^{79} +9.00000 q^{81} -112.890 q^{82} +0.923034i q^{83} +17.1004i q^{84} -192.564 q^{86} +11.9332i q^{87} +(-60.8949 - 18.9465i) q^{88} +44.8231 q^{89} -49.4256 q^{91} -48.6269 q^{92} -88.6410 q^{93} +71.0470i q^{94} -40.4599i q^{96} +21.2539 q^{97} -18.0687i q^{98} +(9.80385 - 31.5101i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 20 q^{4} + 12 q^{9} + 20 q^{11} - 24 q^{12} + 12 q^{14} + 4 q^{16} + 12 q^{22} + 92 q^{23} + 204 q^{26} + 80 q^{31} + 12 q^{33} + 48 q^{34} - 60 q^{36} + 64 q^{37} + 120 q^{38} - 84 q^{42} - 124 q^{44}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/825\mathbb{Z}\right)^\times\).

\(n\) \(376\) \(551\) \(727\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.35285i 1.17642i −0.808707 0.588212i \(-0.799832\pi\)
0.808707 0.588212i \(-0.200168\pi\)
\(3\) −1.73205 −0.577350
\(4\) −1.53590 −0.383975
\(5\) 0 0
\(6\) 4.07525i 0.679209i
\(7\) 6.42810i 0.918300i 0.888359 + 0.459150i \(0.151846\pi\)
−0.888359 + 0.459150i \(0.848154\pi\)
\(8\) 5.79766i 0.724707i
\(9\) 3.00000 0.333333
\(10\) 0 0
\(11\) 3.26795 10.5034i 0.297086 0.954851i
\(12\) 2.66025 0.221688
\(13\) 7.68899i 0.591461i 0.955271 + 0.295730i \(0.0955630\pi\)
−0.955271 + 0.295730i \(0.904437\pi\)
\(14\) 15.1244 1.08031
\(15\) 0 0
\(16\) −19.7846 −1.23654
\(17\) 8.15051i 0.479442i −0.970842 0.239721i \(-0.922944\pi\)
0.970842 0.239721i \(-0.0770559\pi\)
\(18\) 7.05855i 0.392141i
\(19\) 30.4181i 1.60095i 0.599364 + 0.800477i \(0.295420\pi\)
−0.599364 + 0.800477i \(0.704580\pi\)
\(20\) 0 0
\(21\) 11.1338i 0.530181i
\(22\) −24.7128 7.68899i −1.12331 0.349500i
\(23\) 31.6603 1.37653 0.688266 0.725458i \(-0.258372\pi\)
0.688266 + 0.725458i \(0.258372\pi\)
\(24\) 10.0418i 0.418410i
\(25\) 0 0
\(26\) 18.0910 0.695809
\(27\) −5.19615 −0.192450
\(28\) 9.87291i 0.352604i
\(29\) 6.88962i 0.237573i −0.992920 0.118787i \(-0.962100\pi\)
0.992920 0.118787i \(-0.0379004\pi\)
\(30\) 0 0
\(31\) 51.1769 1.65087 0.825434 0.564498i \(-0.190930\pi\)
0.825434 + 0.564498i \(0.190930\pi\)
\(32\) 23.3596i 0.729986i
\(33\) −5.66025 + 18.1923i −0.171523 + 0.551283i
\(34\) −19.1769 −0.564027
\(35\) 0 0
\(36\) −4.60770 −0.127992
\(37\) 19.4641 0.526057 0.263028 0.964788i \(-0.415279\pi\)
0.263028 + 0.964788i \(0.415279\pi\)
\(38\) 71.5692 1.88340
\(39\) 13.3177i 0.341480i
\(40\) 0 0
\(41\) 47.9800i 1.17024i −0.810945 0.585122i \(-0.801047\pi\)
0.810945 0.585122i \(-0.198953\pi\)
\(42\) −26.1962 −0.623718
\(43\) 81.8429i 1.90332i −0.307147 0.951662i \(-0.599374\pi\)
0.307147 0.951662i \(-0.400626\pi\)
\(44\) −5.01924 + 16.1321i −0.114074 + 0.366638i
\(45\) 0 0
\(46\) 74.4918i 1.61939i
\(47\) −30.1962 −0.642471 −0.321236 0.946999i \(-0.604098\pi\)
−0.321236 + 0.946999i \(0.604098\pi\)
\(48\) 34.2679 0.713916
\(49\) 7.67949 0.156724
\(50\) 0 0
\(51\) 14.1171i 0.276806i
\(52\) 11.8095i 0.227106i
\(53\) −26.0526 −0.491558 −0.245779 0.969326i \(-0.579044\pi\)
−0.245779 + 0.969326i \(0.579044\pi\)
\(54\) 12.2258i 0.226403i
\(55\) 0 0
\(56\) 37.2679 0.665499
\(57\) 52.6857i 0.924311i
\(58\) −16.2102 −0.279487
\(59\) 82.7461 1.40248 0.701238 0.712927i \(-0.252631\pi\)
0.701238 + 0.712927i \(0.252631\pi\)
\(60\) 0 0
\(61\) 75.4148i 1.23631i −0.786057 0.618154i \(-0.787881\pi\)
0.786057 0.618154i \(-0.212119\pi\)
\(62\) 120.412i 1.94212i
\(63\) 19.2843i 0.306100i
\(64\) −24.1769 −0.377764
\(65\) 0 0
\(66\) 42.8038 + 13.3177i 0.648543 + 0.201784i
\(67\) 34.0000 0.507463 0.253731 0.967275i \(-0.418342\pi\)
0.253731 + 0.967275i \(0.418342\pi\)
\(68\) 12.5184i 0.184093i
\(69\) −54.8372 −0.794742
\(70\) 0 0
\(71\) −72.7321 −1.02440 −0.512198 0.858868i \(-0.671168\pi\)
−0.512198 + 0.858868i \(0.671168\pi\)
\(72\) 17.3930i 0.241569i
\(73\) 54.8696i 0.751639i 0.926693 + 0.375819i \(0.122639\pi\)
−0.926693 + 0.375819i \(0.877361\pi\)
\(74\) 45.7961i 0.618866i
\(75\) 0 0
\(76\) 46.7191i 0.614725i
\(77\) 67.5167 + 21.0067i 0.876840 + 0.272814i
\(78\) −31.3346 −0.401726
\(79\) 24.3279i 0.307948i −0.988075 0.153974i \(-0.950793\pi\)
0.988075 0.153974i \(-0.0492071\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) −112.890 −1.37670
\(83\) 0.923034i 0.0111209i 0.999985 + 0.00556045i \(0.00176995\pi\)
−0.999985 + 0.00556045i \(0.998230\pi\)
\(84\) 17.1004i 0.203576i
\(85\) 0 0
\(86\) −192.564 −2.23912
\(87\) 11.9332i 0.137163i
\(88\) −60.8949 18.9465i −0.691987 0.215301i
\(89\) 44.8231 0.503630 0.251815 0.967775i \(-0.418973\pi\)
0.251815 + 0.967775i \(0.418973\pi\)
\(90\) 0 0
\(91\) −49.4256 −0.543139
\(92\) −48.6269 −0.528554
\(93\) −88.6410 −0.953129
\(94\) 71.0470i 0.755819i
\(95\) 0 0
\(96\) 40.4599i 0.421458i
\(97\) 21.2539 0.219112 0.109556 0.993981i \(-0.465057\pi\)
0.109556 + 0.993981i \(0.465057\pi\)
\(98\) 18.0687i 0.184374i
\(99\) 9.80385 31.5101i 0.0990288 0.318284i
\(100\) 0 0
\(101\) 52.3479i 0.518296i 0.965838 + 0.259148i \(0.0834417\pi\)
−0.965838 + 0.259148i \(0.916558\pi\)
\(102\) 33.2154 0.325641
\(103\) 4.74613 0.0460790 0.0230395 0.999735i \(-0.492666\pi\)
0.0230395 + 0.999735i \(0.492666\pi\)
\(104\) 44.5781 0.428636
\(105\) 0 0
\(106\) 61.2977i 0.578281i
\(107\) 147.723i 1.38059i −0.723530 0.690293i \(-0.757482\pi\)
0.723530 0.690293i \(-0.242518\pi\)
\(108\) 7.98076 0.0738959
\(109\) 3.56847i 0.0327383i −0.999866 0.0163691i \(-0.994789\pi\)
0.999866 0.0163691i \(-0.00521069\pi\)
\(110\) 0 0
\(111\) −33.7128 −0.303719
\(112\) 127.178i 1.13551i
\(113\) 62.3154 0.551463 0.275732 0.961235i \(-0.411080\pi\)
0.275732 + 0.961235i \(0.411080\pi\)
\(114\) −123.962 −1.08738
\(115\) 0 0
\(116\) 10.5818i 0.0912220i
\(117\) 23.0670i 0.197154i
\(118\) 194.689i 1.64991i
\(119\) 52.3923 0.440271
\(120\) 0 0
\(121\) −99.6410 68.6489i −0.823479 0.567346i
\(122\) −177.440 −1.45442
\(123\) 83.1038i 0.675641i
\(124\) −78.6025 −0.633891
\(125\) 0 0
\(126\) 45.3731 0.360104
\(127\) 28.0200i 0.220630i −0.993897 0.110315i \(-0.964814\pi\)
0.993897 0.110315i \(-0.0351860\pi\)
\(128\) 150.323i 1.17440i
\(129\) 141.756i 1.09888i
\(130\) 0 0
\(131\) 113.184i 0.864001i −0.901873 0.432000i \(-0.857808\pi\)
0.901873 0.432000i \(-0.142192\pi\)
\(132\) 8.69358 27.9416i 0.0658604 0.211679i
\(133\) −195.531 −1.47016
\(134\) 79.9969i 0.596992i
\(135\) 0 0
\(136\) −47.2539 −0.347455
\(137\) 70.7846 0.516676 0.258338 0.966055i \(-0.416825\pi\)
0.258338 + 0.966055i \(0.416825\pi\)
\(138\) 129.024i 0.934953i
\(139\) 130.499i 0.938839i 0.882975 + 0.469420i \(0.155537\pi\)
−0.882975 + 0.469420i \(0.844463\pi\)
\(140\) 0 0
\(141\) 52.3013 0.370931
\(142\) 171.128i 1.20512i
\(143\) 80.7602 + 25.1272i 0.564757 + 0.175715i
\(144\) −59.3538 −0.412179
\(145\) 0 0
\(146\) 129.100 0.884246
\(147\) −13.3013 −0.0904848
\(148\) −29.8949 −0.201992
\(149\) 125.793i 0.844248i 0.906538 + 0.422124i \(0.138715\pi\)
−0.906538 + 0.422124i \(0.861285\pi\)
\(150\) 0 0
\(151\) 275.238i 1.82277i −0.411556 0.911384i \(-0.635015\pi\)
0.411556 0.911384i \(-0.364985\pi\)
\(152\) 176.354 1.16022
\(153\) 24.4515i 0.159814i
\(154\) 49.4256 158.857i 0.320946 1.03154i
\(155\) 0 0
\(156\) 20.4547i 0.131120i
\(157\) 273.138 1.73974 0.869868 0.493285i \(-0.164204\pi\)
0.869868 + 0.493285i \(0.164204\pi\)
\(158\) −57.2398 −0.362277
\(159\) 45.1244 0.283801
\(160\) 0 0
\(161\) 203.515i 1.26407i
\(162\) 21.1756i 0.130714i
\(163\) −62.0666 −0.380777 −0.190388 0.981709i \(-0.560975\pi\)
−0.190388 + 0.981709i \(0.560975\pi\)
\(164\) 73.6924i 0.449344i
\(165\) 0 0
\(166\) 2.17176 0.0130829
\(167\) 47.9800i 0.287305i 0.989628 + 0.143653i \(0.0458848\pi\)
−0.989628 + 0.143653i \(0.954115\pi\)
\(168\) −64.5500 −0.384226
\(169\) 109.879 0.650174
\(170\) 0 0
\(171\) 91.2543i 0.533651i
\(172\) 125.702i 0.730828i
\(173\) 143.017i 0.826688i −0.910575 0.413344i \(-0.864361\pi\)
0.910575 0.413344i \(-0.135639\pi\)
\(174\) 28.0770 0.161362
\(175\) 0 0
\(176\) −64.6551 + 207.805i −0.367359 + 1.18071i
\(177\) −143.321 −0.809720
\(178\) 105.462i 0.592483i
\(179\) 36.6025 0.204483 0.102242 0.994760i \(-0.467398\pi\)
0.102242 + 0.994760i \(0.467398\pi\)
\(180\) 0 0
\(181\) −84.1718 −0.465037 −0.232519 0.972592i \(-0.574697\pi\)
−0.232519 + 0.972592i \(0.574697\pi\)
\(182\) 116.291i 0.638962i
\(183\) 130.622i 0.713783i
\(184\) 183.555i 0.997583i
\(185\) 0 0
\(186\) 208.559i 1.12128i
\(187\) −85.6077 26.6354i −0.457795 0.142436i
\(188\) 46.3782 0.246693
\(189\) 33.4014i 0.176727i
\(190\) 0 0
\(191\) 44.2346 0.231595 0.115797 0.993273i \(-0.463058\pi\)
0.115797 + 0.993273i \(0.463058\pi\)
\(192\) 41.8756 0.218102
\(193\) 136.127i 0.705323i 0.935751 + 0.352662i \(0.114723\pi\)
−0.935751 + 0.352662i \(0.885277\pi\)
\(194\) 50.0071i 0.257769i
\(195\) 0 0
\(196\) −11.7949 −0.0601782
\(197\) 5.96659i 0.0302872i −0.999885 0.0151436i \(-0.995179\pi\)
0.999885 0.0151436i \(-0.00482055\pi\)
\(198\) −74.1384 23.0670i −0.374437 0.116500i
\(199\) −234.056 −1.17616 −0.588081 0.808802i \(-0.700116\pi\)
−0.588081 + 0.808802i \(0.700116\pi\)
\(200\) 0 0
\(201\) −58.8897 −0.292984
\(202\) 123.167 0.609736
\(203\) 44.2872 0.218163
\(204\) 21.6824i 0.106286i
\(205\) 0 0
\(206\) 11.1669i 0.0542084i
\(207\) 94.9808 0.458844
\(208\) 152.124i 0.731364i
\(209\) 319.492 + 99.4048i 1.52867 + 0.475621i
\(210\) 0 0
\(211\) 167.469i 0.793690i 0.917886 + 0.396845i \(0.129895\pi\)
−0.917886 + 0.396845i \(0.870105\pi\)
\(212\) 40.0141 0.188746
\(213\) 125.976 0.591435
\(214\) −347.569 −1.62416
\(215\) 0 0
\(216\) 30.1255i 0.139470i
\(217\) 328.970i 1.51599i
\(218\) −8.39608 −0.0385141
\(219\) 95.0370i 0.433959i
\(220\) 0 0
\(221\) 62.6692 0.283571
\(222\) 79.3212i 0.357303i
\(223\) −82.2872 −0.369001 −0.184500 0.982832i \(-0.559067\pi\)
−0.184500 + 0.982832i \(0.559067\pi\)
\(224\) −150.158 −0.670347
\(225\) 0 0
\(226\) 146.619i 0.648755i
\(227\) 40.9999i 0.180616i −0.995914 0.0903081i \(-0.971215\pi\)
0.995914 0.0903081i \(-0.0287852\pi\)
\(228\) 80.9199i 0.354912i
\(229\) 160.718 0.701825 0.350913 0.936408i \(-0.385871\pi\)
0.350913 + 0.936408i \(0.385871\pi\)
\(230\) 0 0
\(231\) −116.942 36.3847i −0.506244 0.157510i
\(232\) −39.9437 −0.172171
\(233\) 407.954i 1.75087i 0.483332 + 0.875437i \(0.339427\pi\)
−0.483332 + 0.875437i \(0.660573\pi\)
\(234\) 54.2731 0.231936
\(235\) 0 0
\(236\) −127.090 −0.538515
\(237\) 42.1371i 0.177794i
\(238\) 123.271i 0.517946i
\(239\) 202.254i 0.846253i −0.906071 0.423127i \(-0.860933\pi\)
0.906071 0.423127i \(-0.139067\pi\)
\(240\) 0 0
\(241\) 26.8828i 0.111547i −0.998443 0.0557734i \(-0.982238\pi\)
0.998443 0.0557734i \(-0.0177624\pi\)
\(242\) −161.520 + 234.440i −0.667440 + 0.968761i
\(243\) −15.5885 −0.0641500
\(244\) 115.830i 0.474711i
\(245\) 0 0
\(246\) 195.531 0.794840
\(247\) −233.885 −0.946901
\(248\) 296.706i 1.19640i
\(249\) 1.59874i 0.00642065i
\(250\) 0 0
\(251\) 398.277 1.58676 0.793380 0.608726i \(-0.208319\pi\)
0.793380 + 0.608726i \(0.208319\pi\)
\(252\) 29.6187i 0.117535i
\(253\) 103.464 332.539i 0.408949 1.31438i
\(254\) −65.9268 −0.259554
\(255\) 0 0
\(256\) 256.979 1.00383
\(257\) 337.818 1.31447 0.657233 0.753687i \(-0.271727\pi\)
0.657233 + 0.753687i \(0.271727\pi\)
\(258\) 333.531 1.29275
\(259\) 125.117i 0.483078i
\(260\) 0 0
\(261\) 20.6689i 0.0791910i
\(262\) −266.305 −1.01643
\(263\) 134.529i 0.511516i 0.966741 + 0.255758i \(0.0823250\pi\)
−0.966741 + 0.255758i \(0.917675\pi\)
\(264\) 105.473 + 32.8162i 0.399519 + 0.124304i
\(265\) 0 0
\(266\) 460.054i 1.72953i
\(267\) −77.6359 −0.290771
\(268\) −52.2205 −0.194853
\(269\) −341.870 −1.27089 −0.635447 0.772144i \(-0.719184\pi\)
−0.635447 + 0.772144i \(0.719184\pi\)
\(270\) 0 0
\(271\) 213.298i 0.787077i 0.919308 + 0.393538i \(0.128749\pi\)
−0.919308 + 0.393538i \(0.871251\pi\)
\(272\) 161.255i 0.592848i
\(273\) 85.6077 0.313581
\(274\) 166.545i 0.607830i
\(275\) 0 0
\(276\) 84.2243 0.305161
\(277\) 84.5789i 0.305339i 0.988277 + 0.152669i \(0.0487870\pi\)
−0.988277 + 0.152669i \(0.951213\pi\)
\(278\) 307.044 1.10447
\(279\) 153.531 0.550289
\(280\) 0 0
\(281\) 351.148i 1.24964i 0.780771 + 0.624818i \(0.214827\pi\)
−0.780771 + 0.624818i \(0.785173\pi\)
\(282\) 123.057i 0.436372i
\(283\) 285.943i 1.01040i −0.863002 0.505201i \(-0.831419\pi\)
0.863002 0.505201i \(-0.168581\pi\)
\(284\) 111.709 0.393342
\(285\) 0 0
\(286\) 59.1206 190.017i 0.206715 0.664394i
\(287\) 308.420 1.07464
\(288\) 70.0787i 0.243329i
\(289\) 222.569 0.770136
\(290\) 0 0
\(291\) −36.8128 −0.126504
\(292\) 84.2742i 0.288610i
\(293\) 393.927i 1.34446i 0.740342 + 0.672231i \(0.234664\pi\)
−0.740342 + 0.672231i \(0.765336\pi\)
\(294\) 31.2959i 0.106449i
\(295\) 0 0
\(296\) 112.846i 0.381237i
\(297\) −16.9808 + 54.5770i −0.0571743 + 0.183761i
\(298\) 295.972 0.993194
\(299\) 243.435i 0.814165i
\(300\) 0 0
\(301\) 526.095 1.74782
\(302\) −647.594 −2.14435
\(303\) 90.6691i 0.299238i
\(304\) 601.810i 1.97964i
\(305\) 0 0
\(306\) −57.5307 −0.188009
\(307\) 58.2239i 0.189654i 0.995494 + 0.0948272i \(0.0302299\pi\)
−0.995494 + 0.0948272i \(0.969770\pi\)
\(308\) −103.699 32.2642i −0.336684 0.104754i
\(309\) −8.22055 −0.0266037
\(310\) 0 0
\(311\) 207.611 0.667561 0.333780 0.942651i \(-0.391676\pi\)
0.333780 + 0.942651i \(0.391676\pi\)
\(312\) −77.2116 −0.247473
\(313\) 376.697 1.20351 0.601753 0.798682i \(-0.294469\pi\)
0.601753 + 0.798682i \(0.294469\pi\)
\(314\) 642.654i 2.04667i
\(315\) 0 0
\(316\) 37.3651i 0.118244i
\(317\) −246.809 −0.778577 −0.389289 0.921116i \(-0.627279\pi\)
−0.389289 + 0.921116i \(0.627279\pi\)
\(318\) 106.171i 0.333870i
\(319\) −72.3641 22.5149i −0.226847 0.0705797i
\(320\) 0 0
\(321\) 255.863i 0.797082i
\(322\) 478.841 1.48708
\(323\) 247.923 0.767564
\(324\) −13.8231 −0.0426638
\(325\) 0 0
\(326\) 146.033i 0.447955i
\(327\) 6.18078i 0.0189015i
\(328\) −278.172 −0.848085
\(329\) 194.104i 0.589982i
\(330\) 0 0
\(331\) 146.431 0.442389 0.221195 0.975230i \(-0.429004\pi\)
0.221195 + 0.975230i \(0.429004\pi\)
\(332\) 1.41769i 0.00427014i
\(333\) 58.3923 0.175352
\(334\) 112.890 0.337993
\(335\) 0 0
\(336\) 220.278i 0.655589i
\(337\) 354.007i 1.05047i 0.850958 + 0.525233i \(0.176022\pi\)
−0.850958 + 0.525233i \(0.823978\pi\)
\(338\) 258.530i 0.764881i
\(339\) −107.933 −0.318387
\(340\) 0 0
\(341\) 167.244 537.529i 0.490450 1.57633i
\(342\) 214.708 0.627800
\(343\) 364.342i 1.06222i
\(344\) −474.497 −1.37935
\(345\) 0 0
\(346\) −336.497 −0.972536
\(347\) 529.807i 1.52682i −0.645913 0.763411i \(-0.723523\pi\)
0.645913 0.763411i \(-0.276477\pi\)
\(348\) 18.3281i 0.0526671i
\(349\) 342.873i 0.982445i 0.871034 + 0.491223i \(0.163450\pi\)
−0.871034 + 0.491223i \(0.836550\pi\)
\(350\) 0 0
\(351\) 39.9532i 0.113827i
\(352\) 245.354 + 76.3379i 0.697028 + 0.216869i
\(353\) −191.990 −0.543880 −0.271940 0.962314i \(-0.587665\pi\)
−0.271940 + 0.962314i \(0.587665\pi\)
\(354\) 337.212i 0.952575i
\(355\) 0 0
\(356\) −68.8437 −0.193381
\(357\) −90.7461 −0.254191
\(358\) 86.1203i 0.240559i
\(359\) 601.654i 1.67592i 0.545735 + 0.837958i \(0.316250\pi\)
−0.545735 + 0.837958i \(0.683750\pi\)
\(360\) 0 0
\(361\) −564.261 −1.56305
\(362\) 198.043i 0.547081i
\(363\) 172.583 + 118.903i 0.475436 + 0.327557i
\(364\) 75.9127 0.208551
\(365\) 0 0
\(366\) 307.335 0.839712
\(367\) 139.415 0.379878 0.189939 0.981796i \(-0.439171\pi\)
0.189939 + 0.981796i \(0.439171\pi\)
\(368\) −626.386 −1.70214
\(369\) 143.940i 0.390081i
\(370\) 0 0
\(371\) 167.469i 0.451398i
\(372\) 136.144 0.365977
\(373\) 303.629i 0.814019i −0.913424 0.407009i \(-0.866572\pi\)
0.913424 0.407009i \(-0.133428\pi\)
\(374\) −62.6692 + 201.422i −0.167565 + 0.538561i
\(375\) 0 0
\(376\) 175.067i 0.465604i
\(377\) 52.9742 0.140515
\(378\) −78.5885 −0.207906
\(379\) 690.046 1.82070 0.910351 0.413837i \(-0.135812\pi\)
0.910351 + 0.413837i \(0.135812\pi\)
\(380\) 0 0
\(381\) 48.5321i 0.127381i
\(382\) 104.077i 0.272454i
\(383\) 53.2576 0.139054 0.0695269 0.997580i \(-0.477851\pi\)
0.0695269 + 0.997580i \(0.477851\pi\)
\(384\) 260.367i 0.678039i
\(385\) 0 0
\(386\) 320.287 0.829760
\(387\) 245.529i 0.634441i
\(388\) −32.6438 −0.0841334
\(389\) −587.027 −1.50907 −0.754533 0.656262i \(-0.772137\pi\)
−0.754533 + 0.656262i \(0.772137\pi\)
\(390\) 0 0
\(391\) 258.047i 0.659967i
\(392\) 44.5231i 0.113579i
\(393\) 196.041i 0.498831i
\(394\) −14.0385 −0.0356306
\(395\) 0 0
\(396\) −15.0577 + 48.3963i −0.0380245 + 0.122213i
\(397\) −485.797 −1.22367 −0.611835 0.790985i \(-0.709569\pi\)
−0.611835 + 0.790985i \(0.709569\pi\)
\(398\) 550.699i 1.38367i
\(399\) 338.669 0.848795
\(400\) 0 0
\(401\) −166.469 −0.415135 −0.207568 0.978221i \(-0.566555\pi\)
−0.207568 + 0.978221i \(0.566555\pi\)
\(402\) 138.559i 0.344673i
\(403\) 393.499i 0.976424i
\(404\) 80.4010i 0.199012i
\(405\) 0 0
\(406\) 104.201i 0.256653i
\(407\) 63.6077 204.438i 0.156284 0.502306i
\(408\) 81.8461 0.200603
\(409\) 270.161i 0.660541i −0.943886 0.330271i \(-0.892860\pi\)
0.943886 0.330271i \(-0.107140\pi\)
\(410\) 0 0
\(411\) −122.603 −0.298303
\(412\) −7.28958 −0.0176932
\(413\) 531.901i 1.28790i
\(414\) 223.475i 0.539796i
\(415\) 0 0
\(416\) −179.611 −0.431758
\(417\) 226.030i 0.542039i
\(418\) 233.885 751.717i 0.559532 1.79837i
\(419\) −356.631 −0.851147 −0.425574 0.904924i \(-0.639928\pi\)
−0.425574 + 0.904924i \(0.639928\pi\)
\(420\) 0 0
\(421\) −462.238 −1.09795 −0.548977 0.835838i \(-0.684982\pi\)
−0.548977 + 0.835838i \(0.684982\pi\)
\(422\) 394.028 0.933716
\(423\) −90.5885 −0.214157
\(424\) 151.044i 0.356236i
\(425\) 0 0
\(426\) 296.402i 0.695778i
\(427\) 484.774 1.13530
\(428\) 226.887i 0.530110i
\(429\) −139.881 43.5216i −0.326062 0.101449i
\(430\) 0 0
\(431\) 199.552i 0.462997i 0.972835 + 0.231498i \(0.0743628\pi\)
−0.972835 + 0.231498i \(0.925637\pi\)
\(432\) 102.804 0.237972
\(433\) 45.3693 0.104779 0.0523895 0.998627i \(-0.483316\pi\)
0.0523895 + 0.998627i \(0.483316\pi\)
\(434\) 774.018 1.78345
\(435\) 0 0
\(436\) 5.48081i 0.0125707i
\(437\) 963.045i 2.20376i
\(438\) −223.608 −0.510520
\(439\) 484.630i 1.10394i 0.833864 + 0.551970i \(0.186124\pi\)
−0.833864 + 0.551970i \(0.813876\pi\)
\(440\) 0 0
\(441\) 23.0385 0.0522414
\(442\) 147.451i 0.333600i
\(443\) −375.538 −0.847716 −0.423858 0.905729i \(-0.639324\pi\)
−0.423858 + 0.905729i \(0.639324\pi\)
\(444\) 51.7795 0.116620
\(445\) 0 0
\(446\) 193.609i 0.434102i
\(447\) 217.880i 0.487427i
\(448\) 155.412i 0.346901i
\(449\) −385.636 −0.858877 −0.429439 0.903096i \(-0.641289\pi\)
−0.429439 + 0.903096i \(0.641289\pi\)
\(450\) 0 0
\(451\) −503.951 156.796i −1.11741 0.347664i
\(452\) −95.7101 −0.211748
\(453\) 476.726i 1.05238i
\(454\) −96.4665 −0.212481
\(455\) 0 0
\(456\) −305.454 −0.669855
\(457\) 378.368i 0.827939i 0.910291 + 0.413970i \(0.135858\pi\)
−0.910291 + 0.413970i \(0.864142\pi\)
\(458\) 378.145i 0.825644i
\(459\) 42.3513i 0.0922686i
\(460\) 0 0
\(461\) 224.522i 0.487033i 0.969897 + 0.243516i \(0.0783010\pi\)
−0.969897 + 0.243516i \(0.921699\pi\)
\(462\) −85.6077 + 275.148i −0.185298 + 0.595557i
\(463\) 52.3820 0.113136 0.0565680 0.998399i \(-0.481984\pi\)
0.0565680 + 0.998399i \(0.481984\pi\)
\(464\) 136.308i 0.293768i
\(465\) 0 0
\(466\) 959.854 2.05977
\(467\) −513.387 −1.09933 −0.549665 0.835385i \(-0.685245\pi\)
−0.549665 + 0.835385i \(0.685245\pi\)
\(468\) 35.4285i 0.0757020i
\(469\) 218.556i 0.466003i
\(470\) 0 0
\(471\) −473.090 −1.00444
\(472\) 479.734i 1.01639i
\(473\) −859.626 267.459i −1.81739 0.565451i
\(474\) 99.1422 0.209161
\(475\) 0 0
\(476\) −80.4693 −0.169053
\(477\) −78.1577 −0.163853
\(478\) −475.874 −0.995553
\(479\) 238.730i 0.498392i −0.968453 0.249196i \(-0.919834\pi\)
0.968453 0.249196i \(-0.0801663\pi\)
\(480\) 0 0
\(481\) 149.659i 0.311142i
\(482\) −63.2511 −0.131226
\(483\) 352.499i 0.729812i
\(484\) 153.038 + 105.438i 0.316195 + 0.217846i
\(485\) 0 0
\(486\) 36.6773i 0.0754677i
\(487\) −593.251 −1.21817 −0.609087 0.793103i \(-0.708464\pi\)
−0.609087 + 0.793103i \(0.708464\pi\)
\(488\) −437.229 −0.895962
\(489\) 107.503 0.219842
\(490\) 0 0
\(491\) 858.935i 1.74936i −0.484703 0.874679i \(-0.661072\pi\)
0.484703 0.874679i \(-0.338928\pi\)
\(492\) 127.639i 0.259429i
\(493\) −56.1539 −0.113902
\(494\) 550.295i 1.11396i
\(495\) 0 0
\(496\) −1012.52 −2.04136
\(497\) 467.529i 0.940702i
\(498\) −3.76160 −0.00755341
\(499\) −803.692 −1.61061 −0.805303 0.592864i \(-0.797997\pi\)
−0.805303 + 0.592864i \(0.797997\pi\)
\(500\) 0 0
\(501\) 83.1038i 0.165876i
\(502\) 937.085i 1.86670i
\(503\) 752.302i 1.49563i −0.663907 0.747815i \(-0.731103\pi\)
0.663907 0.747815i \(-0.268897\pi\)
\(504\) 111.804 0.221833
\(505\) 0 0
\(506\) −782.414 243.435i −1.54627 0.481098i
\(507\) −190.317 −0.375378
\(508\) 43.0359i 0.0847163i
\(509\) −249.268 −0.489721 −0.244860 0.969558i \(-0.578742\pi\)
−0.244860 + 0.969558i \(0.578742\pi\)
\(510\) 0 0
\(511\) −352.708 −0.690230
\(512\) 3.34215i 0.00652764i
\(513\) 158.057i 0.308104i
\(514\) 794.835i 1.54637i
\(515\) 0 0
\(516\) 217.723i 0.421944i
\(517\) −98.6795 + 317.161i −0.190869 + 0.613464i
\(518\) 294.382 0.568305
\(519\) 247.713i 0.477288i
\(520\) 0 0
\(521\) 475.864 0.913367 0.456683 0.889629i \(-0.349037\pi\)
0.456683 + 0.889629i \(0.349037\pi\)
\(522\) −48.6307 −0.0931623
\(523\) 362.833i 0.693754i 0.937911 + 0.346877i \(0.112758\pi\)
−0.937911 + 0.346877i \(0.887242\pi\)
\(524\) 173.839i 0.331754i
\(525\) 0 0
\(526\) 316.526 0.601760
\(527\) 417.118i 0.791495i
\(528\) 111.986 359.929i 0.212095 0.681683i
\(529\) 473.372 0.894843
\(530\) 0 0
\(531\) 248.238 0.467492
\(532\) 300.315 0.564503
\(533\) 368.918 0.692154
\(534\) 182.665i 0.342070i
\(535\) 0 0
\(536\) 197.120i 0.367762i
\(537\) −63.3975 −0.118059
\(538\) 804.370i 1.49511i
\(539\) 25.0962 80.6604i 0.0465606 0.149648i
\(540\) 0 0
\(541\) 830.667i 1.53543i 0.640792 + 0.767715i \(0.278606\pi\)
−0.640792 + 0.767715i \(0.721394\pi\)
\(542\) 501.857 0.925936
\(543\) 145.790 0.268489
\(544\) 190.392 0.349986
\(545\) 0 0
\(546\) 201.422i 0.368905i
\(547\) 456.091i 0.833804i 0.908952 + 0.416902i \(0.136884\pi\)
−0.908952 + 0.416902i \(0.863116\pi\)
\(548\) −108.718 −0.198390
\(549\) 226.244i 0.412103i
\(550\) 0 0
\(551\) 209.569 0.380343
\(552\) 317.927i 0.575955i
\(553\) 156.382 0.282788
\(554\) 199.001 0.359208
\(555\) 0 0
\(556\) 200.433i 0.360490i
\(557\) 338.810i 0.608277i −0.952628 0.304138i \(-0.901631\pi\)
0.952628 0.304138i \(-0.0983686\pi\)
\(558\) 361.235i 0.647374i
\(559\) 629.290 1.12574
\(560\) 0 0
\(561\) 148.277 + 46.1339i 0.264308 + 0.0822352i
\(562\) 826.197 1.47010
\(563\) 447.041i 0.794034i 0.917811 + 0.397017i \(0.129955\pi\)
−0.917811 + 0.397017i \(0.870045\pi\)
\(564\) −80.3294 −0.142428
\(565\) 0 0
\(566\) −672.782 −1.18866
\(567\) 57.8529i 0.102033i
\(568\) 421.676i 0.742387i
\(569\) 522.893i 0.918969i 0.888186 + 0.459485i \(0.151966\pi\)
−0.888186 + 0.459485i \(0.848034\pi\)
\(570\) 0 0
\(571\) 904.574i 1.58419i −0.610396 0.792096i \(-0.708990\pi\)
0.610396 0.792096i \(-0.291010\pi\)
\(572\) −124.039 38.5929i −0.216852 0.0674701i
\(573\) −76.6166 −0.133711
\(574\) 725.667i 1.26423i
\(575\) 0 0
\(576\) −72.5307 −0.125921
\(577\) −237.674 −0.411914 −0.205957 0.978561i \(-0.566031\pi\)
−0.205957 + 0.978561i \(0.566031\pi\)
\(578\) 523.672i 0.906007i
\(579\) 235.780i 0.407219i
\(580\) 0 0
\(581\) −5.93336 −0.0102123
\(582\) 86.6149i 0.148823i
\(583\) −85.1384 + 273.639i −0.146035 + 0.469364i
\(584\) 318.115 0.544718
\(585\) 0 0
\(586\) 926.851 1.58166
\(587\) 578.515 0.985546 0.492773 0.870158i \(-0.335983\pi\)
0.492773 + 0.870158i \(0.335983\pi\)
\(588\) 20.4294 0.0347439
\(589\) 1556.71i 2.64296i
\(590\) 0 0
\(591\) 10.3344i 0.0174863i
\(592\) −385.090 −0.650489
\(593\) 333.857i 0.562997i −0.959562 0.281499i \(-0.909169\pi\)
0.959562 0.281499i \(-0.0908314\pi\)
\(594\) 128.412 + 39.9532i 0.216181 + 0.0672612i
\(595\) 0 0
\(596\) 193.205i 0.324170i
\(597\) 405.397 0.679058
\(598\) 572.767 0.957804
\(599\) −846.483 −1.41316 −0.706580 0.707633i \(-0.749763\pi\)
−0.706580 + 0.707633i \(0.749763\pi\)
\(600\) 0 0
\(601\) 455.011i 0.757089i 0.925583 + 0.378545i \(0.123575\pi\)
−0.925583 + 0.378545i \(0.876425\pi\)
\(602\) 1237.82i 2.05618i
\(603\) 102.000 0.169154
\(604\) 422.738i 0.699897i
\(605\) 0 0
\(606\) −213.331 −0.352031
\(607\) 726.557i 1.19696i −0.801137 0.598482i \(-0.795771\pi\)
0.801137 0.598482i \(-0.204229\pi\)
\(608\) −710.554 −1.16867
\(609\) −76.7077 −0.125957
\(610\) 0 0
\(611\) 232.178i 0.379997i
\(612\) 37.5551i 0.0613645i
\(613\) 574.532i 0.937247i −0.883398 0.468624i \(-0.844750\pi\)
0.883398 0.468624i \(-0.155250\pi\)
\(614\) 136.992 0.223114
\(615\) 0 0
\(616\) 121.790 391.439i 0.197711 0.635452i
\(617\) 278.946 0.452101 0.226050 0.974116i \(-0.427419\pi\)
0.226050 + 0.974116i \(0.427419\pi\)
\(618\) 19.3417i 0.0312973i
\(619\) −593.061 −0.958096 −0.479048 0.877789i \(-0.659018\pi\)
−0.479048 + 0.877789i \(0.659018\pi\)
\(620\) 0 0
\(621\) −164.512 −0.264914
\(622\) 488.478i 0.785335i
\(623\) 288.127i 0.462484i
\(624\) 263.486i 0.422253i
\(625\) 0 0
\(626\) 886.312i 1.41583i
\(627\) −553.377 172.174i −0.882579 0.274600i
\(628\) −419.513 −0.668014
\(629\) 158.642i 0.252214i
\(630\) 0 0
\(631\) −361.664 −0.573160 −0.286580 0.958056i \(-0.592518\pi\)
−0.286580 + 0.958056i \(0.592518\pi\)
\(632\) −141.045 −0.223172
\(633\) 290.064i 0.458237i
\(634\) 580.704i 0.915937i
\(635\) 0 0
\(636\) −69.3064 −0.108972
\(637\) 59.0475i 0.0926963i
\(638\) −52.9742 + 170.262i −0.0830317 + 0.266868i
\(639\) −218.196 −0.341465
\(640\) 0 0
\(641\) 784.382 1.22368 0.611842 0.790980i \(-0.290429\pi\)
0.611842 + 0.790980i \(0.290429\pi\)
\(642\) 602.008 0.937706
\(643\) −362.764 −0.564174 −0.282087 0.959389i \(-0.591027\pi\)
−0.282087 + 0.959389i \(0.591027\pi\)
\(644\) 312.579i 0.485371i
\(645\) 0 0
\(646\) 583.325i 0.902981i
\(647\) −921.727 −1.42462 −0.712308 0.701867i \(-0.752350\pi\)
−0.712308 + 0.701867i \(0.752350\pi\)
\(648\) 52.1789i 0.0805230i
\(649\) 270.410 869.112i 0.416657 1.33916i
\(650\) 0 0
\(651\) 569.794i 0.875259i
\(652\) 95.3281 0.146209
\(653\) −26.8653 −0.0411414 −0.0205707 0.999788i \(-0.506548\pi\)
−0.0205707 + 0.999788i \(0.506548\pi\)
\(654\) 14.5424 0.0222361
\(655\) 0 0
\(656\) 949.266i 1.44705i
\(657\) 164.609i 0.250546i
\(658\) −456.697 −0.694069
\(659\) 320.820i 0.486828i −0.969922 0.243414i \(-0.921733\pi\)
0.969922 0.243414i \(-0.0782674\pi\)
\(660\) 0 0
\(661\) 331.969 0.502222 0.251111 0.967958i \(-0.419204\pi\)
0.251111 + 0.967958i \(0.419204\pi\)
\(662\) 344.530i 0.520437i
\(663\) −108.546 −0.163720
\(664\) 5.35144 0.00805939
\(665\) 0 0
\(666\) 137.388i 0.206289i
\(667\) 218.127i 0.327027i
\(668\) 73.6924i 0.110318i
\(669\) 142.526 0.213043
\(670\) 0 0
\(671\) −792.109 246.452i −1.18049 0.367290i
\(672\) 260.081 0.387025
\(673\) 797.019i 1.18428i −0.805836 0.592139i \(-0.798284\pi\)
0.805836 0.592139i \(-0.201716\pi\)
\(674\) 832.925 1.23579
\(675\) 0 0
\(676\) −168.764 −0.249650
\(677\) 534.175i 0.789033i 0.918889 + 0.394516i \(0.129088\pi\)
−0.918889 + 0.394516i \(0.870912\pi\)
\(678\) 253.951i 0.374559i
\(679\) 136.622i 0.201211i
\(680\) 0 0
\(681\) 71.0139i 0.104279i
\(682\) −1264.73 393.499i −1.85444 0.576978i
\(683\) 843.097 1.23440 0.617201 0.786805i \(-0.288266\pi\)
0.617201 + 0.786805i \(0.288266\pi\)
\(684\) 140.157i 0.204908i
\(685\) 0 0
\(686\) 857.241 1.24962
\(687\) −278.372 −0.405199
\(688\) 1619.23i 2.35353i
\(689\) 200.318i 0.290737i
\(690\) 0 0
\(691\) −193.615 −0.280196 −0.140098 0.990138i \(-0.544742\pi\)
−0.140098 + 0.990138i \(0.544742\pi\)
\(692\) 219.660i 0.317427i
\(693\) 202.550 + 63.0201i 0.292280 + 0.0909382i
\(694\) −1246.56 −1.79619
\(695\) 0 0
\(696\) 69.1845 0.0994030
\(697\) −391.061 −0.561064
\(698\) 806.729 1.15577
\(699\) 706.597i 1.01087i
\(700\) 0 0
\(701\) 448.863i 0.640318i −0.947364 0.320159i \(-0.896264\pi\)
0.947364 0.320159i \(-0.103736\pi\)
\(702\) −94.0038 −0.133909
\(703\) 592.061i 0.842192i
\(704\) −79.0089 + 253.939i −0.112229 + 0.360708i
\(705\) 0 0
\(706\) 451.723i 0.639834i
\(707\) −336.497 −0.475951
\(708\) 220.126 0.310912
\(709\) −311.031 −0.438689 −0.219345 0.975647i \(-0.570392\pi\)
−0.219345 + 0.975647i \(0.570392\pi\)
\(710\) 0 0
\(711\) 72.9836i 0.102649i
\(712\) 259.869i 0.364985i
\(713\) 1620.27 2.27247
\(714\) 213.512i 0.299036i
\(715\) 0 0
\(716\) −56.2178 −0.0785165
\(717\) 350.315i 0.488584i
\(718\) 1415.60 1.97159
\(719\) 486.014 0.675958 0.337979 0.941154i \(-0.390257\pi\)
0.337979 + 0.941154i \(0.390257\pi\)
\(720\) 0 0
\(721\) 30.5086i 0.0423143i
\(722\) 1327.62i 1.83881i
\(723\) 46.5623i 0.0644016i
\(724\) 129.279 0.178563
\(725\) 0 0
\(726\) 279.762 406.062i 0.385347 0.559315i
\(727\) −38.8616 −0.0534547 −0.0267273 0.999643i \(-0.508509\pi\)
−0.0267273 + 0.999643i \(0.508509\pi\)
\(728\) 286.553i 0.393617i
\(729\) 27.0000 0.0370370
\(730\) 0 0
\(731\) −667.061 −0.912533
\(732\) 200.623i 0.274075i
\(733\) 175.562i 0.239511i −0.992803 0.119756i \(-0.961789\pi\)
0.992803 0.119756i \(-0.0382111\pi\)
\(734\) 328.023i 0.446898i
\(735\) 0 0
\(736\) 739.570i 1.00485i
\(737\) 111.110 357.114i 0.150760 0.484551i
\(738\) −338.669 −0.458901
\(739\) 494.527i 0.669184i −0.942363 0.334592i \(-0.891402\pi\)
0.942363 0.334592i \(-0.108598\pi\)
\(740\) 0 0
\(741\) 405.100 0.546694
\(742\) −394.028 −0.531035
\(743\) 1150.84i 1.54892i −0.632625 0.774458i \(-0.718023\pi\)
0.632625 0.774458i \(-0.281977\pi\)
\(744\) 513.910i 0.690740i
\(745\) 0 0
\(746\) −714.393 −0.957632
\(747\) 2.76910i 0.00370696i
\(748\) 131.485 + 40.9093i 0.175782 + 0.0546916i
\(749\) 949.577 1.26779
\(750\) 0 0
\(751\) 1343.73 1.78926 0.894628 0.446813i \(-0.147441\pi\)
0.894628 + 0.446813i \(0.147441\pi\)
\(752\) 597.419 0.794440
\(753\) −689.836 −0.916117
\(754\) 124.640i 0.165306i
\(755\) 0 0
\(756\) 51.3012i 0.0678587i
\(757\) −1034.58 −1.36669 −0.683343 0.730097i \(-0.739475\pi\)
−0.683343 + 0.730097i \(0.739475\pi\)
\(758\) 1623.57i 2.14192i
\(759\) −179.205 + 575.974i −0.236107 + 0.758859i
\(760\) 0 0
\(761\) 798.527i 1.04931i −0.851314 0.524656i \(-0.824194\pi\)
0.851314 0.524656i \(-0.175806\pi\)
\(762\) 114.189 0.149854
\(763\) 22.9385 0.0300636
\(764\) −67.9399 −0.0889266
\(765\) 0 0
\(766\) 125.307i 0.163586i
\(767\) 636.234i 0.829510i
\(768\) −445.101 −0.579559
\(769\) 261.311i 0.339806i −0.985461 0.169903i \(-0.945655\pi\)
0.985461 0.169903i \(-0.0543455\pi\)
\(770\) 0 0
\(771\) −585.118 −0.758908
\(772\) 209.078i 0.270826i
\(773\) 327.734 0.423977 0.211989 0.977272i \(-0.432006\pi\)
0.211989 + 0.977272i \(0.432006\pi\)
\(774\) −577.692 −0.746372
\(775\) 0 0
\(776\) 123.223i 0.158792i
\(777\) 216.709i 0.278905i
\(778\) 1381.19i 1.77530i
\(779\) 1459.46 1.87351
\(780\) 0 0
\(781\) −237.685 + 763.931i −0.304334 + 0.978144i
\(782\) −607.146 −0.776402
\(783\) 35.7995i 0.0457210i
\(784\) −151.936 −0.193796
\(785\) 0 0
\(786\) 461.254 0.586837
\(787\) 289.388i 0.367711i 0.982953 + 0.183855i \(0.0588578\pi\)
−0.982953 + 0.183855i \(0.941142\pi\)
\(788\) 9.16407i 0.0116295i
\(789\) 233.010i 0.295324i
\(790\) 0 0
\(791\) 400.570i 0.506409i
\(792\) −182.685 56.8394i −0.230662 0.0717669i
\(793\) 579.864 0.731228
\(794\) 1143.01i 1.43956i
\(795\) 0 0
\(796\) 359.487 0.451617
\(797\) −113.681 −0.142636 −0.0713180 0.997454i \(-0.522721\pi\)
−0.0713180 + 0.997454i \(0.522721\pi\)
\(798\) 796.837i 0.998543i
\(799\) 246.114i 0.308028i
\(800\) 0 0
\(801\) 134.469 0.167877
\(802\) 391.677i 0.488375i
\(803\) 576.315 + 179.311i 0.717703 + 0.223302i
\(804\) 90.4486 0.112498
\(805\) 0 0
\(806\) 925.843 1.14869
\(807\) 592.137 0.733751
\(808\) 303.495 0.375613
\(809\) 854.163i 1.05583i −0.849299 0.527913i \(-0.822975\pi\)
0.849299 0.527913i \(-0.177025\pi\)
\(810\) 0 0
\(811\) 486.533i 0.599917i 0.953952 + 0.299959i \(0.0969729\pi\)
−0.953952 + 0.299959i \(0.903027\pi\)
\(812\) −68.0206 −0.0837692
\(813\) 369.443i 0.454419i
\(814\) −481.013 149.659i −0.590925 0.183857i
\(815\) 0 0
\(816\) 279.301i 0.342281i
\(817\) 2489.51 3.04713
\(818\) −635.649 −0.777077
\(819\) −148.277 −0.181046
\(820\) 0 0
\(821\) 527.104i 0.642027i 0.947075 + 0.321014i \(0.104024\pi\)
−0.947075 + 0.321014i \(0.895976\pi\)
\(822\) 288.465i 0.350931i
\(823\) 314.805 0.382509 0.191255 0.981540i \(-0.438744\pi\)
0.191255 + 0.981540i \(0.438744\pi\)
\(824\) 27.5165i 0.0333938i
\(825\) 0 0
\(826\) 1251.48 1.51511
\(827\) 111.652i 0.135008i 0.997719 + 0.0675040i \(0.0215035\pi\)
−0.997719 + 0.0675040i \(0.978496\pi\)
\(828\) −145.881 −0.176185
\(829\) −695.395 −0.838836 −0.419418 0.907793i \(-0.637766\pi\)
−0.419418 + 0.907793i \(0.637766\pi\)
\(830\) 0 0
\(831\) 146.495i 0.176288i
\(832\) 185.896i 0.223433i
\(833\) 62.5918i 0.0751402i
\(834\) −531.815 −0.637668
\(835\) 0 0
\(836\) −490.708 152.676i −0.586971 0.182626i
\(837\) −265.923 −0.317710
\(838\) 839.098i 1.00131i
\(839\) −383.968 −0.457650 −0.228825 0.973468i \(-0.573488\pi\)
−0.228825 + 0.973468i \(0.573488\pi\)
\(840\) 0 0
\(841\) 793.533 0.943559
\(842\) 1087.58i 1.29166i
\(843\) 608.205i 0.721477i
\(844\) 257.215i 0.304757i
\(845\) 0 0
\(846\) 213.141i 0.251940i
\(847\) 441.282 640.503i 0.520994 0.756202i
\(848\) 515.440 0.607830
\(849\) 495.269i 0.583355i
\(850\) 0 0
\(851\) 616.238 0.724134
\(852\) −193.486 −0.227096
\(853\) 570.527i 0.668847i 0.942423 + 0.334424i \(0.108542\pi\)
−0.942423 + 0.334424i \(0.891458\pi\)
\(854\) 1140.60i 1.33560i
\(855\) 0 0
\(856\) −856.446 −1.00052
\(857\) 315.553i 0.368207i 0.982907 + 0.184103i \(0.0589382\pi\)
−0.982907 + 0.184103i \(0.941062\pi\)
\(858\) −102.400 + 329.118i −0.119347 + 0.383588i
\(859\) −107.923 −0.125638 −0.0628190 0.998025i \(-0.520009\pi\)
−0.0628190 + 0.998025i \(0.520009\pi\)
\(860\) 0 0
\(861\) −534.200 −0.620441
\(862\) 469.515 0.544681
\(863\) −1431.55 −1.65881 −0.829403 0.558651i \(-0.811319\pi\)
−0.829403 + 0.558651i \(0.811319\pi\)
\(864\) 121.380i 0.140486i
\(865\) 0 0
\(866\) 106.747i 0.123265i
\(867\) −385.501 −0.444638
\(868\) 505.265i 0.582103i
\(869\) −255.524 79.5022i −0.294044 0.0914870i
\(870\) 0 0
\(871\) 261.426i 0.300144i
\(872\) −20.6888 −0.0237257
\(873\) 63.7616 0.0730373
\(874\) 2265.90 2.59256
\(875\) 0 0
\(876\) 145.967i 0.166629i
\(877\) 567.758i 0.647386i −0.946162 0.323693i \(-0.895075\pi\)
0.946162 0.323693i \(-0.104925\pi\)
\(878\) 1140.26 1.29870
\(879\) 682.302i 0.776225i
\(880\) 0 0
\(881\) 488.641 0.554644 0.277322 0.960777i \(-0.410553\pi\)
0.277322 + 0.960777i \(0.410553\pi\)
\(882\) 54.2061i 0.0614581i
\(883\) −840.144 −0.951465 −0.475732 0.879590i \(-0.657817\pi\)
−0.475732 + 0.879590i \(0.657817\pi\)
\(884\) −96.2535 −0.108884
\(885\) 0 0
\(886\) 883.585i 0.997274i
\(887\) 981.439i 1.10647i −0.833025 0.553235i \(-0.813393\pi\)
0.833025 0.553235i \(-0.186607\pi\)
\(888\) 195.455i 0.220107i
\(889\) 180.115 0.202605
\(890\) 0 0
\(891\) 29.4115 94.5302i 0.0330096 0.106095i
\(892\) 126.385 0.141687
\(893\) 918.510i 1.02857i
\(894\) −512.638 −0.573421
\(895\) 0 0
\(896\) −966.291 −1.07845
\(897\) 421.642i 0.470059i
\(898\) 907.343i 1.01040i
\(899\) 352.589i 0.392202i
\(900\) 0 0
\(901\) 212.342i 0.235673i
\(902\) −368.918 + 1185.72i −0.409000 + 1.31455i
\(903\) −911.223 −1.00911
\(904\) 361.283i 0.399650i
\(905\) 0 0
\(906\) 1121.67 1.23804
\(907\) −438.610 −0.483583 −0.241792 0.970328i \(-0.577735\pi\)
−0.241792 + 0.970328i \(0.577735\pi\)
\(908\) 62.9716i 0.0693520i
\(909\) 157.044i 0.172765i
\(910\) 0 0
\(911\) −170.042 −0.186654 −0.0933272 0.995635i \(-0.529750\pi\)
−0.0933272 + 0.995635i \(0.529750\pi\)
\(912\) 1042.37i 1.14295i
\(913\) 9.69496 + 3.01643i 0.0106188 + 0.00330386i
\(914\) 890.243 0.974008
\(915\) 0 0
\(916\) −246.846 −0.269483
\(917\) 727.559 0.793412
\(918\) 99.6462 0.108547
\(919\) 1089.73i 1.18578i 0.805285 + 0.592888i \(0.202012\pi\)
−0.805285 + 0.592888i \(0.797988\pi\)
\(920\) 0 0
\(921\) 100.847i 0.109497i
\(922\) 528.267 0.572957
\(923\) 559.236i 0.605890i
\(924\) 179.611 + 55.8832i 0.194385 + 0.0604796i
\(925\) 0 0
\(926\) 123.247i 0.133096i
\(927\) 14.2384 0.0153597
\(928\) 160.939 0.173425
\(929\) 769.446 0.828252 0.414126 0.910220i \(-0.364087\pi\)
0.414126 + 0.910220i \(0.364087\pi\)
\(930\) 0 0
\(931\) 233.596i 0.250908i
\(932\) 626.576i 0.672291i
\(933\) −359.594 −0.385417
\(934\) 1207.92i 1.29328i
\(935\) 0 0
\(936\) 133.734 0.142879
\(937\) 1606.78i 1.71481i 0.514641 + 0.857406i \(0.327925\pi\)
−0.514641 + 0.857406i \(0.672075\pi\)
\(938\) 514.228 0.548218
\(939\) −652.459 −0.694844
\(940\) 0 0
\(941\) 1279.34i 1.35955i 0.733419 + 0.679777i \(0.237923\pi\)
−0.733419 + 0.679777i \(0.762077\pi\)
\(942\) 1113.11i 1.18164i
\(943\) 1519.06i 1.61088i
\(944\) −1637.10 −1.73422
\(945\) 0 0
\(946\) −629.290 + 2022.57i −0.665211 + 2.13802i
\(947\) 985.800 1.04097 0.520486 0.853870i \(-0.325751\pi\)
0.520486 + 0.853870i \(0.325751\pi\)
\(948\) 64.7183i 0.0682682i
\(949\) −421.892 −0.444565
\(950\) 0 0
\(951\) 427.486 0.449512
\(952\) 303.753i 0.319068i
\(953\) 761.038i 0.798571i 0.916827 + 0.399285i \(0.130742\pi\)
−0.916827 + 0.399285i \(0.869258\pi\)
\(954\) 183.893i 0.192760i
\(955\) 0 0
\(956\) 310.642i 0.324940i
\(957\) 125.338 + 38.9970i 0.130970 + 0.0407492i
\(958\) −561.695 −0.586320
\(959\) 455.011i 0.474464i
\(960\) 0 0
\(961\) 1658.08 1.72537
\(962\) 352.126 0.366035
\(963\) 443.168i 0.460195i
\(964\) 41.2892i 0.0428311i
\(965\) 0 0
\(966\) −829.377 −0.858568
\(967\) 702.938i 0.726926i 0.931609 + 0.363463i \(0.118406\pi\)
−0.931609 + 0.363463i \(0.881594\pi\)
\(968\) −398.003 + 577.685i −0.411160 + 0.596782i
\(969\) −429.415 −0.443153
\(970\) 0 0
\(971\) −1289.42 −1.32793 −0.663963 0.747766i \(-0.731127\pi\)
−0.663963 + 0.747766i \(0.731127\pi\)
\(972\) 23.9423 0.0246320
\(973\) −838.859 −0.862136
\(974\) 1395.83i 1.43309i
\(975\) 0 0
\(976\) 1492.05i 1.52874i
\(977\) 690.526 0.706782 0.353391 0.935476i \(-0.385029\pi\)
0.353391 + 0.935476i \(0.385029\pi\)
\(978\) 252.937i 0.258627i
\(979\) 146.480 470.793i 0.149622 0.480892i
\(980\) 0 0
\(981\) 10.7054i 0.0109128i
\(982\) −2020.94 −2.05799
\(983\) −1080.40 −1.09908 −0.549540 0.835467i \(-0.685197\pi\)
−0.549540 + 0.835467i \(0.685197\pi\)
\(984\) 481.808 0.489642
\(985\) 0 0
\(986\) 132.122i 0.133998i
\(987\) 336.198i 0.340626i
\(988\) 359.223 0.363586
\(989\) 2591.17i 2.61999i
\(990\) 0 0
\(991\) −686.561 −0.692796 −0.346398 0.938088i \(-0.612595\pi\)
−0.346398 + 0.938088i \(0.612595\pi\)
\(992\) 1195.47i 1.20511i
\(993\) −253.626 −0.255413
\(994\) −1100.03 −1.10667
\(995\) 0 0
\(996\) 2.45551i 0.00246537i
\(997\) 1413.50i 1.41775i 0.705333 + 0.708876i \(0.250797\pi\)
−0.705333 + 0.708876i \(0.749203\pi\)
\(998\) 1890.97i 1.89476i
\(999\) −101.138 −0.101240
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 825.3.b.a.76.2 4
5.2 odd 4 825.3.h.a.274.6 8
5.3 odd 4 825.3.h.a.274.3 8
5.4 even 2 33.3.c.a.10.3 yes 4
11.10 odd 2 inner 825.3.b.a.76.3 4
15.14 odd 2 99.3.c.b.10.2 4
20.19 odd 2 528.3.j.c.241.2 4
40.19 odd 2 2112.3.j.d.769.4 4
40.29 even 2 2112.3.j.a.769.1 4
55.4 even 10 363.3.g.e.94.2 16
55.9 even 10 363.3.g.e.40.3 16
55.14 even 10 363.3.g.e.112.3 16
55.19 odd 10 363.3.g.e.112.2 16
55.24 odd 10 363.3.g.e.40.2 16
55.29 odd 10 363.3.g.e.94.3 16
55.32 even 4 825.3.h.a.274.4 8
55.39 odd 10 363.3.g.e.118.3 16
55.43 even 4 825.3.h.a.274.5 8
55.49 even 10 363.3.g.e.118.2 16
55.54 odd 2 33.3.c.a.10.2 4
60.59 even 2 1584.3.j.f.1297.4 4
165.164 even 2 99.3.c.b.10.3 4
220.219 even 2 528.3.j.c.241.1 4
440.109 odd 2 2112.3.j.a.769.2 4
440.219 even 2 2112.3.j.d.769.3 4
660.659 odd 2 1584.3.j.f.1297.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.3.c.a.10.2 4 55.54 odd 2
33.3.c.a.10.3 yes 4 5.4 even 2
99.3.c.b.10.2 4 15.14 odd 2
99.3.c.b.10.3 4 165.164 even 2
363.3.g.e.40.2 16 55.24 odd 10
363.3.g.e.40.3 16 55.9 even 10
363.3.g.e.94.2 16 55.4 even 10
363.3.g.e.94.3 16 55.29 odd 10
363.3.g.e.112.2 16 55.19 odd 10
363.3.g.e.112.3 16 55.14 even 10
363.3.g.e.118.2 16 55.49 even 10
363.3.g.e.118.3 16 55.39 odd 10
528.3.j.c.241.1 4 220.219 even 2
528.3.j.c.241.2 4 20.19 odd 2
825.3.b.a.76.2 4 1.1 even 1 trivial
825.3.b.a.76.3 4 11.10 odd 2 inner
825.3.h.a.274.3 8 5.3 odd 4
825.3.h.a.274.4 8 55.32 even 4
825.3.h.a.274.5 8 55.43 even 4
825.3.h.a.274.6 8 5.2 odd 4
1584.3.j.f.1297.3 4 660.659 odd 2
1584.3.j.f.1297.4 4 60.59 even 2
2112.3.j.a.769.1 4 40.29 even 2
2112.3.j.a.769.2 4 440.109 odd 2
2112.3.j.d.769.3 4 440.219 even 2
2112.3.j.d.769.4 4 40.19 odd 2