Properties

Label 33.3.c.a.10.3
Level $33$
Weight $3$
Character 33.10
Analytic conductor $0.899$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [33,3,Mod(10,33)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(33, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("33.10");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 33 = 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 33.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.899184872389\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.0.39744.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} + 12x^{2} + 4x + 22 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 10.3
Root \(1.36603 - 3.21405i\) of defining polynomial
Character \(\chi\) \(=\) 33.10
Dual form 33.3.c.a.10.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.35285i q^{2} +1.73205 q^{3} -1.53590 q^{4} -4.19615 q^{5} +4.07525i q^{6} -6.42810i q^{7} +5.79766i q^{8} +3.00000 q^{9} -9.87291i q^{10} +(3.26795 - 10.5034i) q^{11} -2.66025 q^{12} -7.68899i q^{13} +15.1244 q^{14} -7.26795 q^{15} -19.7846 q^{16} +8.15051i q^{17} +7.05855i q^{18} +30.4181i q^{19} +6.44486 q^{20} -11.1338i q^{21} +(24.7128 + 7.68899i) q^{22} -31.6603 q^{23} +10.0418i q^{24} -7.39230 q^{25} +18.0910 q^{26} +5.19615 q^{27} +9.87291i q^{28} -6.88962i q^{29} -17.1004i q^{30} +51.1769 q^{31} -23.3596i q^{32} +(5.66025 - 18.1923i) q^{33} -19.1769 q^{34} +26.9733i q^{35} -4.60770 q^{36} -19.4641 q^{37} -71.5692 q^{38} -13.3177i q^{39} -24.3279i q^{40} -47.9800i q^{41} +26.1962 q^{42} +81.8429i q^{43} +(-5.01924 + 16.1321i) q^{44} -12.5885 q^{45} -74.4918i q^{46} +30.1962 q^{47} -34.2679 q^{48} +7.67949 q^{49} -17.3930i q^{50} +14.1171i q^{51} +11.8095i q^{52} +26.0526 q^{53} +12.2258i q^{54} +(-13.7128 + 44.0737i) q^{55} +37.2679 q^{56} +52.6857i q^{57} +16.2102 q^{58} +82.7461 q^{59} +11.1628 q^{60} -75.4148i q^{61} +120.412i q^{62} -19.2843i q^{63} -24.1769 q^{64} +32.2642i q^{65} +(42.8038 + 13.3177i) q^{66} -34.0000 q^{67} -12.5184i q^{68} -54.8372 q^{69} -63.4641 q^{70} -72.7321 q^{71} +17.3930i q^{72} -54.8696i q^{73} -45.7961i q^{74} -12.8038 q^{75} -46.7191i q^{76} +(-67.5167 - 21.0067i) q^{77} +31.3346 q^{78} -24.3279i q^{79} +83.0192 q^{80} +9.00000 q^{81} +112.890 q^{82} -0.923034i q^{83} +17.1004i q^{84} -34.2008i q^{85} -192.564 q^{86} -11.9332i q^{87} +(60.8949 + 18.9465i) q^{88} +44.8231 q^{89} -29.6187i q^{90} -49.4256 q^{91} +48.6269 q^{92} +88.6410 q^{93} +71.0470i q^{94} -127.639i q^{95} -40.4599i q^{96} -21.2539 q^{97} +18.0687i q^{98} +(9.80385 - 31.5101i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 20 q^{4} + 4 q^{5} + 12 q^{9} + 20 q^{11} + 24 q^{12} + 12 q^{14} - 36 q^{15} + 4 q^{16} - 92 q^{20} - 12 q^{22} - 92 q^{23} + 12 q^{25} + 204 q^{26} + 80 q^{31} - 12 q^{33} + 48 q^{34} - 60 q^{36}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/33\mathbb{Z}\right)^\times\).

\(n\) \(13\) \(23\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.35285i 1.17642i 0.808707 + 0.588212i \(0.200168\pi\)
−0.808707 + 0.588212i \(0.799832\pi\)
\(3\) 1.73205 0.577350
\(4\) −1.53590 −0.383975
\(5\) −4.19615 −0.839230 −0.419615 0.907702i \(-0.637835\pi\)
−0.419615 + 0.907702i \(0.637835\pi\)
\(6\) 4.07525i 0.679209i
\(7\) 6.42810i 0.918300i −0.888359 0.459150i \(-0.848154\pi\)
0.888359 0.459150i \(-0.151846\pi\)
\(8\) 5.79766i 0.724707i
\(9\) 3.00000 0.333333
\(10\) 9.87291i 0.987291i
\(11\) 3.26795 10.5034i 0.297086 0.954851i
\(12\) −2.66025 −0.221688
\(13\) 7.68899i 0.591461i −0.955271 0.295730i \(-0.904437\pi\)
0.955271 0.295730i \(-0.0955630\pi\)
\(14\) 15.1244 1.08031
\(15\) −7.26795 −0.484530
\(16\) −19.7846 −1.23654
\(17\) 8.15051i 0.479442i 0.970842 + 0.239721i \(0.0770559\pi\)
−0.970842 + 0.239721i \(0.922944\pi\)
\(18\) 7.05855i 0.392141i
\(19\) 30.4181i 1.60095i 0.599364 + 0.800477i \(0.295420\pi\)
−0.599364 + 0.800477i \(0.704580\pi\)
\(20\) 6.44486 0.322243
\(21\) 11.1338i 0.530181i
\(22\) 24.7128 + 7.68899i 1.12331 + 0.349500i
\(23\) −31.6603 −1.37653 −0.688266 0.725458i \(-0.741628\pi\)
−0.688266 + 0.725458i \(0.741628\pi\)
\(24\) 10.0418i 0.418410i
\(25\) −7.39230 −0.295692
\(26\) 18.0910 0.695809
\(27\) 5.19615 0.192450
\(28\) 9.87291i 0.352604i
\(29\) 6.88962i 0.237573i −0.992920 0.118787i \(-0.962100\pi\)
0.992920 0.118787i \(-0.0379004\pi\)
\(30\) 17.1004i 0.570013i
\(31\) 51.1769 1.65087 0.825434 0.564498i \(-0.190930\pi\)
0.825434 + 0.564498i \(0.190930\pi\)
\(32\) 23.3596i 0.729986i
\(33\) 5.66025 18.1923i 0.171523 0.551283i
\(34\) −19.1769 −0.564027
\(35\) 26.9733i 0.770666i
\(36\) −4.60770 −0.127992
\(37\) −19.4641 −0.526057 −0.263028 0.964788i \(-0.584721\pi\)
−0.263028 + 0.964788i \(0.584721\pi\)
\(38\) −71.5692 −1.88340
\(39\) 13.3177i 0.341480i
\(40\) 24.3279i 0.608197i
\(41\) 47.9800i 1.17024i −0.810945 0.585122i \(-0.801047\pi\)
0.810945 0.585122i \(-0.198953\pi\)
\(42\) 26.1962 0.623718
\(43\) 81.8429i 1.90332i 0.307147 + 0.951662i \(0.400626\pi\)
−0.307147 + 0.951662i \(0.599374\pi\)
\(44\) −5.01924 + 16.1321i −0.114074 + 0.366638i
\(45\) −12.5885 −0.279743
\(46\) 74.4918i 1.61939i
\(47\) 30.1962 0.642471 0.321236 0.946999i \(-0.395902\pi\)
0.321236 + 0.946999i \(0.395902\pi\)
\(48\) −34.2679 −0.713916
\(49\) 7.67949 0.156724
\(50\) 17.3930i 0.347860i
\(51\) 14.1171i 0.276806i
\(52\) 11.8095i 0.227106i
\(53\) 26.0526 0.491558 0.245779 0.969326i \(-0.420956\pi\)
0.245779 + 0.969326i \(0.420956\pi\)
\(54\) 12.2258i 0.226403i
\(55\) −13.7128 + 44.0737i −0.249324 + 0.801340i
\(56\) 37.2679 0.665499
\(57\) 52.6857i 0.924311i
\(58\) 16.2102 0.279487
\(59\) 82.7461 1.40248 0.701238 0.712927i \(-0.252631\pi\)
0.701238 + 0.712927i \(0.252631\pi\)
\(60\) 11.1628 0.186047
\(61\) 75.4148i 1.23631i −0.786057 0.618154i \(-0.787881\pi\)
0.786057 0.618154i \(-0.212119\pi\)
\(62\) 120.412i 1.94212i
\(63\) 19.2843i 0.306100i
\(64\) −24.1769 −0.377764
\(65\) 32.2642i 0.496372i
\(66\) 42.8038 + 13.3177i 0.648543 + 0.201784i
\(67\) −34.0000 −0.507463 −0.253731 0.967275i \(-0.581658\pi\)
−0.253731 + 0.967275i \(0.581658\pi\)
\(68\) 12.5184i 0.184093i
\(69\) −54.8372 −0.794742
\(70\) −63.4641 −0.906630
\(71\) −72.7321 −1.02440 −0.512198 0.858868i \(-0.671168\pi\)
−0.512198 + 0.858868i \(0.671168\pi\)
\(72\) 17.3930i 0.241569i
\(73\) 54.8696i 0.751639i −0.926693 0.375819i \(-0.877361\pi\)
0.926693 0.375819i \(-0.122639\pi\)
\(74\) 45.7961i 0.618866i
\(75\) −12.8038 −0.170718
\(76\) 46.7191i 0.614725i
\(77\) −67.5167 21.0067i −0.876840 0.272814i
\(78\) 31.3346 0.401726
\(79\) 24.3279i 0.307948i −0.988075 0.153974i \(-0.950793\pi\)
0.988075 0.153974i \(-0.0492071\pi\)
\(80\) 83.0192 1.03774
\(81\) 9.00000 0.111111
\(82\) 112.890 1.37670
\(83\) 0.923034i 0.0111209i −0.999985 0.00556045i \(-0.998230\pi\)
0.999985 0.00556045i \(-0.00176995\pi\)
\(84\) 17.1004i 0.203576i
\(85\) 34.2008i 0.402362i
\(86\) −192.564 −2.23912
\(87\) 11.9332i 0.137163i
\(88\) 60.8949 + 18.9465i 0.691987 + 0.215301i
\(89\) 44.8231 0.503630 0.251815 0.967775i \(-0.418973\pi\)
0.251815 + 0.967775i \(0.418973\pi\)
\(90\) 29.6187i 0.329097i
\(91\) −49.4256 −0.543139
\(92\) 48.6269 0.528554
\(93\) 88.6410 0.953129
\(94\) 71.0470i 0.755819i
\(95\) 127.639i 1.34357i
\(96\) 40.4599i 0.421458i
\(97\) −21.2539 −0.219112 −0.109556 0.993981i \(-0.534943\pi\)
−0.109556 + 0.993981i \(0.534943\pi\)
\(98\) 18.0687i 0.184374i
\(99\) 9.80385 31.5101i 0.0990288 0.318284i
\(100\) 11.3538 0.113538
\(101\) 52.3479i 0.518296i 0.965838 + 0.259148i \(0.0834417\pi\)
−0.965838 + 0.259148i \(0.916558\pi\)
\(102\) −33.2154 −0.325641
\(103\) −4.74613 −0.0460790 −0.0230395 0.999735i \(-0.507334\pi\)
−0.0230395 + 0.999735i \(0.507334\pi\)
\(104\) 44.5781 0.428636
\(105\) 46.7191i 0.444944i
\(106\) 61.2977i 0.578281i
\(107\) 147.723i 1.38059i 0.723530 + 0.690293i \(0.242518\pi\)
−0.723530 + 0.690293i \(0.757482\pi\)
\(108\) −7.98076 −0.0738959
\(109\) 3.56847i 0.0327383i −0.999866 0.0163691i \(-0.994789\pi\)
0.999866 0.0163691i \(-0.00521069\pi\)
\(110\) −103.699 32.2642i −0.942716 0.293311i
\(111\) −33.7128 −0.303719
\(112\) 127.178i 1.13551i
\(113\) −62.3154 −0.551463 −0.275732 0.961235i \(-0.588920\pi\)
−0.275732 + 0.961235i \(0.588920\pi\)
\(114\) −123.962 −1.08738
\(115\) 132.851 1.15523
\(116\) 10.5818i 0.0912220i
\(117\) 23.0670i 0.197154i
\(118\) 194.689i 1.64991i
\(119\) 52.3923 0.440271
\(120\) 42.1371i 0.351142i
\(121\) −99.6410 68.6489i −0.823479 0.567346i
\(122\) 177.440 1.45442
\(123\) 83.1038i 0.675641i
\(124\) −78.6025 −0.633891
\(125\) 135.923 1.08738
\(126\) 45.3731 0.360104
\(127\) 28.0200i 0.220630i 0.993897 + 0.110315i \(0.0351860\pi\)
−0.993897 + 0.110315i \(0.964814\pi\)
\(128\) 150.323i 1.17440i
\(129\) 141.756i 1.09888i
\(130\) −75.9127 −0.583944
\(131\) 113.184i 0.864001i −0.901873 0.432000i \(-0.857808\pi\)
0.901873 0.432000i \(-0.142192\pi\)
\(132\) −8.69358 + 27.9416i −0.0658604 + 0.211679i
\(133\) 195.531 1.47016
\(134\) 79.9969i 0.596992i
\(135\) −21.8038 −0.161510
\(136\) −47.2539 −0.347455
\(137\) −70.7846 −0.516676 −0.258338 0.966055i \(-0.583175\pi\)
−0.258338 + 0.966055i \(0.583175\pi\)
\(138\) 129.024i 0.934953i
\(139\) 130.499i 0.938839i 0.882975 + 0.469420i \(0.155537\pi\)
−0.882975 + 0.469420i \(0.844463\pi\)
\(140\) 41.4282i 0.295916i
\(141\) 52.3013 0.370931
\(142\) 171.128i 1.20512i
\(143\) −80.7602 25.1272i −0.564757 0.175715i
\(144\) −59.3538 −0.412179
\(145\) 28.9099i 0.199379i
\(146\) 129.100 0.884246
\(147\) 13.3013 0.0904848
\(148\) 29.8949 0.201992
\(149\) 125.793i 0.844248i 0.906538 + 0.422124i \(0.138715\pi\)
−0.906538 + 0.422124i \(0.861285\pi\)
\(150\) 30.1255i 0.200837i
\(151\) 275.238i 1.82277i −0.411556 0.911384i \(-0.635015\pi\)
0.411556 0.911384i \(-0.364985\pi\)
\(152\) −176.354 −1.16022
\(153\) 24.4515i 0.159814i
\(154\) 49.4256 158.857i 0.320946 1.03154i
\(155\) −214.746 −1.38546
\(156\) 20.4547i 0.131120i
\(157\) −273.138 −1.73974 −0.869868 0.493285i \(-0.835796\pi\)
−0.869868 + 0.493285i \(0.835796\pi\)
\(158\) 57.2398 0.362277
\(159\) 45.1244 0.283801
\(160\) 98.0203i 0.612627i
\(161\) 203.515i 1.26407i
\(162\) 21.1756i 0.130714i
\(163\) 62.0666 0.380777 0.190388 0.981709i \(-0.439025\pi\)
0.190388 + 0.981709i \(0.439025\pi\)
\(164\) 73.6924i 0.449344i
\(165\) −23.7513 + 76.3379i −0.143947 + 0.462654i
\(166\) 2.17176 0.0130829
\(167\) 47.9800i 0.287305i −0.989628 0.143653i \(-0.954115\pi\)
0.989628 0.143653i \(-0.0458848\pi\)
\(168\) 64.5500 0.384226
\(169\) 109.879 0.650174
\(170\) 80.4693 0.473349
\(171\) 91.2543i 0.533651i
\(172\) 125.702i 0.730828i
\(173\) 143.017i 0.826688i 0.910575 + 0.413344i \(0.135639\pi\)
−0.910575 + 0.413344i \(0.864361\pi\)
\(174\) 28.0770 0.161362
\(175\) 47.5185i 0.271534i
\(176\) −64.6551 + 207.805i −0.367359 + 1.18071i
\(177\) 143.321 0.809720
\(178\) 105.462i 0.592483i
\(179\) 36.6025 0.204483 0.102242 0.994760i \(-0.467398\pi\)
0.102242 + 0.994760i \(0.467398\pi\)
\(180\) 19.3346 0.107414
\(181\) −84.1718 −0.465037 −0.232519 0.972592i \(-0.574697\pi\)
−0.232519 + 0.972592i \(0.574697\pi\)
\(182\) 116.291i 0.638962i
\(183\) 130.622i 0.713783i
\(184\) 183.555i 0.997583i
\(185\) 81.6743 0.441483
\(186\) 208.559i 1.12128i
\(187\) 85.6077 + 26.6354i 0.457795 + 0.142436i
\(188\) −46.3782 −0.246693
\(189\) 33.4014i 0.176727i
\(190\) 300.315 1.58061
\(191\) 44.2346 0.231595 0.115797 0.993273i \(-0.463058\pi\)
0.115797 + 0.993273i \(0.463058\pi\)
\(192\) −41.8756 −0.218102
\(193\) 136.127i 0.705323i −0.935751 0.352662i \(-0.885277\pi\)
0.935751 0.352662i \(-0.114723\pi\)
\(194\) 50.0071i 0.257769i
\(195\) 55.8832i 0.286580i
\(196\) −11.7949 −0.0601782
\(197\) 5.96659i 0.0302872i 0.999885 + 0.0151436i \(0.00482055\pi\)
−0.999885 + 0.0151436i \(0.995179\pi\)
\(198\) 74.1384 + 23.0670i 0.374437 + 0.116500i
\(199\) −234.056 −1.17616 −0.588081 0.808802i \(-0.700116\pi\)
−0.588081 + 0.808802i \(0.700116\pi\)
\(200\) 42.8581i 0.214290i
\(201\) −58.8897 −0.292984
\(202\) −123.167 −0.609736
\(203\) −44.2872 −0.218163
\(204\) 21.6824i 0.106286i
\(205\) 201.331i 0.982105i
\(206\) 11.1669i 0.0542084i
\(207\) −94.9808 −0.458844
\(208\) 152.124i 0.731364i
\(209\) 319.492 + 99.4048i 1.52867 + 0.475621i
\(210\) −109.923 −0.523443
\(211\) 167.469i 0.793690i 0.917886 + 0.396845i \(0.129895\pi\)
−0.917886 + 0.396845i \(0.870105\pi\)
\(212\) −40.0141 −0.188746
\(213\) −125.976 −0.591435
\(214\) −347.569 −1.62416
\(215\) 343.425i 1.59733i
\(216\) 30.1255i 0.139470i
\(217\) 328.970i 1.51599i
\(218\) 8.39608 0.0385141
\(219\) 95.0370i 0.433959i
\(220\) 21.0615 67.6927i 0.0957340 0.307694i
\(221\) 62.6692 0.283571
\(222\) 79.3212i 0.357303i
\(223\) 82.2872 0.369001 0.184500 0.982832i \(-0.440933\pi\)
0.184500 + 0.982832i \(0.440933\pi\)
\(224\) −150.158 −0.670347
\(225\) −22.1769 −0.0985641
\(226\) 146.619i 0.648755i
\(227\) 40.9999i 0.180616i 0.995914 + 0.0903081i \(0.0287852\pi\)
−0.995914 + 0.0903081i \(0.971215\pi\)
\(228\) 80.9199i 0.354912i
\(229\) 160.718 0.701825 0.350913 0.936408i \(-0.385871\pi\)
0.350913 + 0.936408i \(0.385871\pi\)
\(230\) 312.579i 1.35904i
\(231\) −116.942 36.3847i −0.506244 0.157510i
\(232\) 39.9437 0.172171
\(233\) 407.954i 1.75087i −0.483332 0.875437i \(-0.660573\pi\)
0.483332 0.875437i \(-0.339427\pi\)
\(234\) 54.2731 0.231936
\(235\) −126.708 −0.539182
\(236\) −127.090 −0.538515
\(237\) 42.1371i 0.177794i
\(238\) 123.271i 0.517946i
\(239\) 202.254i 0.846253i −0.906071 0.423127i \(-0.860933\pi\)
0.906071 0.423127i \(-0.139067\pi\)
\(240\) 143.794 0.599140
\(241\) 26.8828i 0.111547i −0.998443 0.0557734i \(-0.982238\pi\)
0.998443 0.0557734i \(-0.0177624\pi\)
\(242\) 161.520 234.440i 0.667440 0.968761i
\(243\) 15.5885 0.0641500
\(244\) 115.830i 0.474711i
\(245\) −32.2243 −0.131528
\(246\) 195.531 0.794840
\(247\) 233.885 0.946901
\(248\) 296.706i 1.19640i
\(249\) 1.59874i 0.00642065i
\(250\) 319.806i 1.27923i
\(251\) 398.277 1.58676 0.793380 0.608726i \(-0.208319\pi\)
0.793380 + 0.608726i \(0.208319\pi\)
\(252\) 29.6187i 0.117535i
\(253\) −103.464 + 332.539i −0.408949 + 1.31438i
\(254\) −65.9268 −0.259554
\(255\) 59.2375i 0.232304i
\(256\) 256.979 1.00383
\(257\) −337.818 −1.31447 −0.657233 0.753687i \(-0.728273\pi\)
−0.657233 + 0.753687i \(0.728273\pi\)
\(258\) −333.531 −1.29275
\(259\) 125.117i 0.483078i
\(260\) 49.5545i 0.190594i
\(261\) 20.6689i 0.0791910i
\(262\) 266.305 1.01643
\(263\) 134.529i 0.511516i −0.966741 0.255758i \(-0.917675\pi\)
0.966741 0.255758i \(-0.0823250\pi\)
\(264\) 105.473 + 32.8162i 0.399519 + 0.124304i
\(265\) −109.321 −0.412530
\(266\) 460.054i 1.72953i
\(267\) 77.6359 0.290771
\(268\) 52.2205 0.194853
\(269\) −341.870 −1.27089 −0.635447 0.772144i \(-0.719184\pi\)
−0.635447 + 0.772144i \(0.719184\pi\)
\(270\) 51.3012i 0.190004i
\(271\) 213.298i 0.787077i 0.919308 + 0.393538i \(0.128749\pi\)
−0.919308 + 0.393538i \(0.871251\pi\)
\(272\) 161.255i 0.592848i
\(273\) −85.6077 −0.313581
\(274\) 166.545i 0.607830i
\(275\) −24.1577 + 77.6440i −0.0878461 + 0.282342i
\(276\) 84.2243 0.305161
\(277\) 84.5789i 0.305339i −0.988277 0.152669i \(-0.951213\pi\)
0.988277 0.152669i \(-0.0487870\pi\)
\(278\) −307.044 −1.10447
\(279\) 153.531 0.550289
\(280\) −156.382 −0.558507
\(281\) 351.148i 1.24964i 0.780771 + 0.624818i \(0.214827\pi\)
−0.780771 + 0.624818i \(0.785173\pi\)
\(282\) 123.057i 0.436372i
\(283\) 285.943i 1.01040i 0.863002 + 0.505201i \(0.168581\pi\)
−0.863002 + 0.505201i \(0.831419\pi\)
\(284\) 111.709 0.393342
\(285\) 221.077i 0.775710i
\(286\) 59.1206 190.017i 0.206715 0.664394i
\(287\) −308.420 −1.07464
\(288\) 70.0787i 0.243329i
\(289\) 222.569 0.770136
\(290\) −68.0206 −0.234554
\(291\) −36.8128 −0.126504
\(292\) 84.2742i 0.288610i
\(293\) 393.927i 1.34446i −0.740342 0.672231i \(-0.765336\pi\)
0.740342 0.672231i \(-0.234664\pi\)
\(294\) 31.2959i 0.106449i
\(295\) −347.215 −1.17700
\(296\) 112.846i 0.381237i
\(297\) 16.9808 54.5770i 0.0571743 0.183761i
\(298\) −295.972 −0.993194
\(299\) 243.435i 0.814165i
\(300\) 19.6654 0.0655514
\(301\) 526.095 1.74782
\(302\) 647.594 2.14435
\(303\) 90.6691i 0.299238i
\(304\) 601.810i 1.97964i
\(305\) 316.452i 1.03755i
\(306\) −57.5307 −0.188009
\(307\) 58.2239i 0.189654i −0.995494 0.0948272i \(-0.969770\pi\)
0.995494 0.0948272i \(-0.0302299\pi\)
\(308\) 103.699 + 32.2642i 0.336684 + 0.104754i
\(309\) −8.22055 −0.0266037
\(310\) 505.265i 1.62989i
\(311\) 207.611 0.667561 0.333780 0.942651i \(-0.391676\pi\)
0.333780 + 0.942651i \(0.391676\pi\)
\(312\) 77.2116 0.247473
\(313\) −376.697 −1.20351 −0.601753 0.798682i \(-0.705531\pi\)
−0.601753 + 0.798682i \(0.705531\pi\)
\(314\) 642.654i 2.04667i
\(315\) 80.9199i 0.256889i
\(316\) 37.3651i 0.118244i
\(317\) 246.809 0.778577 0.389289 0.921116i \(-0.372721\pi\)
0.389289 + 0.921116i \(0.372721\pi\)
\(318\) 106.171i 0.333870i
\(319\) −72.3641 22.5149i −0.226847 0.0705797i
\(320\) 101.450 0.317031
\(321\) 255.863i 0.797082i
\(322\) −478.841 −1.48708
\(323\) −247.923 −0.767564
\(324\) −13.8231 −0.0426638
\(325\) 56.8394i 0.174890i
\(326\) 146.033i 0.447955i
\(327\) 6.18078i 0.0189015i
\(328\) 278.172 0.848085
\(329\) 194.104i 0.589982i
\(330\) −179.611 55.8832i −0.544277 0.169343i
\(331\) 146.431 0.442389 0.221195 0.975230i \(-0.429004\pi\)
0.221195 + 0.975230i \(0.429004\pi\)
\(332\) 1.41769i 0.00427014i
\(333\) −58.3923 −0.175352
\(334\) 112.890 0.337993
\(335\) 142.669 0.425878
\(336\) 220.278i 0.655589i
\(337\) 354.007i 1.05047i −0.850958 0.525233i \(-0.823978\pi\)
0.850958 0.525233i \(-0.176022\pi\)
\(338\) 258.530i 0.764881i
\(339\) −107.933 −0.318387
\(340\) 52.5289i 0.154497i
\(341\) 167.244 537.529i 0.490450 1.57633i
\(342\) −214.708 −0.627800
\(343\) 364.342i 1.06222i
\(344\) −474.497 −1.37935
\(345\) 230.105 0.666971
\(346\) −336.497 −0.972536
\(347\) 529.807i 1.52682i 0.645913 + 0.763411i \(0.276477\pi\)
−0.645913 + 0.763411i \(0.723523\pi\)
\(348\) 18.3281i 0.0526671i
\(349\) 342.873i 0.982445i 0.871034 + 0.491223i \(0.163450\pi\)
−0.871034 + 0.491223i \(0.836550\pi\)
\(350\) −111.804 −0.319440
\(351\) 39.9532i 0.113827i
\(352\) −245.354 76.3379i −0.697028 0.216869i
\(353\) 191.990 0.543880 0.271940 0.962314i \(-0.412335\pi\)
0.271940 + 0.962314i \(0.412335\pi\)
\(354\) 337.212i 0.952575i
\(355\) 305.195 0.859704
\(356\) −68.8437 −0.193381
\(357\) 90.7461 0.254191
\(358\) 86.1203i 0.240559i
\(359\) 601.654i 1.67592i 0.545735 + 0.837958i \(0.316250\pi\)
−0.545735 + 0.837958i \(0.683750\pi\)
\(360\) 72.9836i 0.202732i
\(361\) −564.261 −1.56305
\(362\) 198.043i 0.547081i
\(363\) −172.583 118.903i −0.475436 0.327557i
\(364\) 75.9127 0.208551
\(365\) 230.241i 0.630798i
\(366\) 307.335 0.839712
\(367\) −139.415 −0.379878 −0.189939 0.981796i \(-0.560829\pi\)
−0.189939 + 0.981796i \(0.560829\pi\)
\(368\) 626.386 1.70214
\(369\) 143.940i 0.390081i
\(370\) 192.167i 0.519371i
\(371\) 167.469i 0.451398i
\(372\) −136.144 −0.365977
\(373\) 303.629i 0.814019i 0.913424 + 0.407009i \(0.133428\pi\)
−0.913424 + 0.407009i \(0.866572\pi\)
\(374\) −62.6692 + 201.422i −0.167565 + 0.538561i
\(375\) 235.426 0.627802
\(376\) 175.067i 0.465604i
\(377\) −52.9742 −0.140515
\(378\) 78.5885 0.207906
\(379\) 690.046 1.82070 0.910351 0.413837i \(-0.135812\pi\)
0.910351 + 0.413837i \(0.135812\pi\)
\(380\) 196.041i 0.515896i
\(381\) 48.5321i 0.127381i
\(382\) 104.077i 0.272454i
\(383\) −53.2576 −0.139054 −0.0695269 0.997580i \(-0.522149\pi\)
−0.0695269 + 0.997580i \(0.522149\pi\)
\(384\) 260.367i 0.678039i
\(385\) 283.310 + 88.1474i 0.735871 + 0.228954i
\(386\) 320.287 0.829760
\(387\) 245.529i 0.634441i
\(388\) 32.6438 0.0841334
\(389\) −587.027 −1.50907 −0.754533 0.656262i \(-0.772137\pi\)
−0.754533 + 0.656262i \(0.772137\pi\)
\(390\) −131.485 −0.337140
\(391\) 258.047i 0.659967i
\(392\) 44.5231i 0.113579i
\(393\) 196.041i 0.498831i
\(394\) −14.0385 −0.0356306
\(395\) 102.083i 0.258439i
\(396\) −15.0577 + 48.3963i −0.0380245 + 0.122213i
\(397\) 485.797 1.22367 0.611835 0.790985i \(-0.290431\pi\)
0.611835 + 0.790985i \(0.290431\pi\)
\(398\) 550.699i 1.38367i
\(399\) 338.669 0.848795
\(400\) 146.254 0.365635
\(401\) −166.469 −0.415135 −0.207568 0.978221i \(-0.566555\pi\)
−0.207568 + 0.978221i \(0.566555\pi\)
\(402\) 138.559i 0.344673i
\(403\) 393.499i 0.976424i
\(404\) 80.4010i 0.199012i
\(405\) −37.7654 −0.0932478
\(406\) 104.201i 0.256653i
\(407\) −63.6077 + 204.438i −0.156284 + 0.502306i
\(408\) −81.8461 −0.200603
\(409\) 270.161i 0.660541i −0.943886 0.330271i \(-0.892860\pi\)
0.943886 0.330271i \(-0.107140\pi\)
\(410\) −473.703 −1.15537
\(411\) −122.603 −0.298303
\(412\) 7.28958 0.0176932
\(413\) 531.901i 1.28790i
\(414\) 223.475i 0.539796i
\(415\) 3.87319i 0.00933299i
\(416\) −179.611 −0.431758
\(417\) 226.030i 0.542039i
\(418\) −233.885 + 751.717i −0.559532 + 1.79837i
\(419\) −356.631 −0.851147 −0.425574 0.904924i \(-0.639928\pi\)
−0.425574 + 0.904924i \(0.639928\pi\)
\(420\) 71.7558i 0.170847i
\(421\) −462.238 −1.09795 −0.548977 0.835838i \(-0.684982\pi\)
−0.548977 + 0.835838i \(0.684982\pi\)
\(422\) −394.028 −0.933716
\(423\) 90.5885 0.214157
\(424\) 151.044i 0.356236i
\(425\) 60.2510i 0.141767i
\(426\) 296.402i 0.695778i
\(427\) −484.774 −1.13530
\(428\) 226.887i 0.530110i
\(429\) −139.881 43.5216i −0.326062 0.101449i
\(430\) 808.028 1.87914
\(431\) 199.552i 0.462997i 0.972835 + 0.231498i \(0.0743628\pi\)
−0.972835 + 0.231498i \(0.925637\pi\)
\(432\) −102.804 −0.237972
\(433\) −45.3693 −0.104779 −0.0523895 0.998627i \(-0.516684\pi\)
−0.0523895 + 0.998627i \(0.516684\pi\)
\(434\) 774.018 1.78345
\(435\) 50.0734i 0.115111i
\(436\) 5.48081i 0.0125707i
\(437\) 963.045i 2.20376i
\(438\) 223.608 0.510520
\(439\) 484.630i 1.10394i 0.833864 + 0.551970i \(0.186124\pi\)
−0.833864 + 0.551970i \(0.813876\pi\)
\(440\) −255.524 79.5022i −0.580737 0.180687i
\(441\) 23.0385 0.0522414
\(442\) 147.451i 0.333600i
\(443\) 375.538 0.847716 0.423858 0.905729i \(-0.360676\pi\)
0.423858 + 0.905729i \(0.360676\pi\)
\(444\) 51.7795 0.116620
\(445\) −188.084 −0.422662
\(446\) 193.609i 0.434102i
\(447\) 217.880i 0.487427i
\(448\) 155.412i 0.346901i
\(449\) −385.636 −0.858877 −0.429439 0.903096i \(-0.641289\pi\)
−0.429439 + 0.903096i \(0.641289\pi\)
\(450\) 52.1789i 0.115953i
\(451\) −503.951 156.796i −1.11741 0.347664i
\(452\) 95.7101 0.211748
\(453\) 476.726i 1.05238i
\(454\) −96.4665 −0.212481
\(455\) 207.397 0.455819
\(456\) −305.454 −0.669855
\(457\) 378.368i 0.827939i −0.910291 0.413970i \(-0.864142\pi\)
0.910291 0.413970i \(-0.135858\pi\)
\(458\) 378.145i 0.825644i
\(459\) 42.3513i 0.0922686i
\(460\) −204.046 −0.443578
\(461\) 224.522i 0.487033i 0.969897 + 0.243516i \(0.0783010\pi\)
−0.969897 + 0.243516i \(0.921699\pi\)
\(462\) 85.6077 275.148i 0.185298 0.595557i
\(463\) −52.3820 −0.113136 −0.0565680 0.998399i \(-0.518016\pi\)
−0.0565680 + 0.998399i \(0.518016\pi\)
\(464\) 136.308i 0.293768i
\(465\) −371.951 −0.799895
\(466\) 959.854 2.05977
\(467\) 513.387 1.09933 0.549665 0.835385i \(-0.314755\pi\)
0.549665 + 0.835385i \(0.314755\pi\)
\(468\) 35.4285i 0.0757020i
\(469\) 218.556i 0.466003i
\(470\) 298.124i 0.634306i
\(471\) −473.090 −1.00444
\(472\) 479.734i 1.01639i
\(473\) 859.626 + 267.459i 1.81739 + 0.565451i
\(474\) 99.1422 0.209161
\(475\) 224.860i 0.473389i
\(476\) −80.4693 −0.169053
\(477\) 78.1577 0.163853
\(478\) 475.874 0.995553
\(479\) 238.730i 0.498392i −0.968453 0.249196i \(-0.919834\pi\)
0.968453 0.249196i \(-0.0801663\pi\)
\(480\) 169.776i 0.353700i
\(481\) 149.659i 0.311142i
\(482\) 63.2511 0.131226
\(483\) 352.499i 0.729812i
\(484\) 153.038 + 105.438i 0.316195 + 0.217846i
\(485\) 89.1845 0.183885
\(486\) 36.6773i 0.0754677i
\(487\) 593.251 1.21817 0.609087 0.793103i \(-0.291536\pi\)
0.609087 + 0.793103i \(0.291536\pi\)
\(488\) 437.229 0.895962
\(489\) 107.503 0.219842
\(490\) 75.8190i 0.154733i
\(491\) 858.935i 1.74936i −0.484703 0.874679i \(-0.661072\pi\)
0.484703 0.874679i \(-0.338928\pi\)
\(492\) 127.639i 0.259429i
\(493\) 56.1539 0.113902
\(494\) 550.295i 1.11396i
\(495\) −41.1384 + 132.221i −0.0831080 + 0.267113i
\(496\) −1012.52 −2.04136
\(497\) 467.529i 0.940702i
\(498\) 3.76160 0.00755341
\(499\) −803.692 −1.61061 −0.805303 0.592864i \(-0.797997\pi\)
−0.805303 + 0.592864i \(0.797997\pi\)
\(500\) −208.764 −0.417528
\(501\) 83.1038i 0.165876i
\(502\) 937.085i 1.86670i
\(503\) 752.302i 1.49563i 0.663907 + 0.747815i \(0.268897\pi\)
−0.663907 + 0.747815i \(0.731103\pi\)
\(504\) 111.804 0.221833
\(505\) 219.660i 0.434969i
\(506\) −782.414 243.435i −1.54627 0.481098i
\(507\) 190.317 0.375378
\(508\) 43.0359i 0.0847163i
\(509\) −249.268 −0.489721 −0.244860 0.969558i \(-0.578742\pi\)
−0.244860 + 0.969558i \(0.578742\pi\)
\(510\) 139.377 0.273288
\(511\) −352.708 −0.690230
\(512\) 3.34215i 0.00652764i
\(513\) 158.057i 0.308104i
\(514\) 794.835i 1.54637i
\(515\) 19.9155 0.0386709
\(516\) 217.723i 0.421944i
\(517\) 98.6795 317.161i 0.190869 0.613464i
\(518\) −294.382 −0.568305
\(519\) 247.713i 0.477288i
\(520\) −187.057 −0.359724
\(521\) 475.864 0.913367 0.456683 0.889629i \(-0.349037\pi\)
0.456683 + 0.889629i \(0.349037\pi\)
\(522\) 48.6307 0.0931623
\(523\) 362.833i 0.693754i −0.937911 0.346877i \(-0.887242\pi\)
0.937911 0.346877i \(-0.112758\pi\)
\(524\) 173.839i 0.331754i
\(525\) 82.3045i 0.156770i
\(526\) 316.526 0.601760
\(527\) 417.118i 0.791495i
\(528\) −111.986 + 359.929i −0.212095 + 0.681683i
\(529\) 473.372 0.894843
\(530\) 257.215i 0.485311i
\(531\) 248.238 0.467492
\(532\) −300.315 −0.564503
\(533\) −368.918 −0.692154
\(534\) 182.665i 0.342070i
\(535\) 619.867i 1.15863i
\(536\) 197.120i 0.367762i
\(537\) 63.3975 0.118059
\(538\) 804.370i 1.49511i
\(539\) 25.0962 80.6604i 0.0465606 0.149648i
\(540\) 33.4885 0.0620157
\(541\) 830.667i 1.53543i 0.640792 + 0.767715i \(0.278606\pi\)
−0.640792 + 0.767715i \(0.721394\pi\)
\(542\) −501.857 −0.925936
\(543\) −145.790 −0.268489
\(544\) 190.392 0.349986
\(545\) 14.9739i 0.0274750i
\(546\) 201.422i 0.368905i
\(547\) 456.091i 0.833804i −0.908952 0.416902i \(-0.863116\pi\)
0.908952 0.416902i \(-0.136884\pi\)
\(548\) 108.718 0.198390
\(549\) 226.244i 0.412103i
\(550\) −182.685 56.8394i −0.332154 0.103344i
\(551\) 209.569 0.380343
\(552\) 317.927i 0.575955i
\(553\) −156.382 −0.282788
\(554\) 199.001 0.359208
\(555\) 141.464 0.254890
\(556\) 200.433i 0.360490i
\(557\) 338.810i 0.608277i 0.952628 + 0.304138i \(0.0983686\pi\)
−0.952628 + 0.304138i \(0.901631\pi\)
\(558\) 361.235i 0.647374i
\(559\) 629.290 1.12574
\(560\) 533.656i 0.952958i
\(561\) 148.277 + 46.1339i 0.264308 + 0.0822352i
\(562\) −826.197 −1.47010
\(563\) 447.041i 0.794034i −0.917811 0.397017i \(-0.870045\pi\)
0.917811 0.397017i \(-0.129955\pi\)
\(564\) −80.3294 −0.142428
\(565\) 261.485 0.462805
\(566\) −672.782 −1.18866
\(567\) 57.8529i 0.102033i
\(568\) 421.676i 0.742387i
\(569\) 522.893i 0.918969i 0.888186 + 0.459485i \(0.151966\pi\)
−0.888186 + 0.459485i \(0.848034\pi\)
\(570\) 520.161 0.912564
\(571\) 904.574i 1.58419i −0.610396 0.792096i \(-0.708990\pi\)
0.610396 0.792096i \(-0.291010\pi\)
\(572\) 124.039 + 38.5929i 0.216852 + 0.0674701i
\(573\) 76.6166 0.133711
\(574\) 725.667i 1.26423i
\(575\) 234.042 0.407030
\(576\) −72.5307 −0.125921
\(577\) 237.674 0.411914 0.205957 0.978561i \(-0.433969\pi\)
0.205957 + 0.978561i \(0.433969\pi\)
\(578\) 523.672i 0.906007i
\(579\) 235.780i 0.407219i
\(580\) 44.4027i 0.0765563i
\(581\) −5.93336 −0.0102123
\(582\) 86.6149i 0.148823i
\(583\) 85.1384 273.639i 0.146035 0.469364i
\(584\) 318.115 0.544718
\(585\) 96.7925i 0.165457i
\(586\) 926.851 1.58166
\(587\) −578.515 −0.985546 −0.492773 0.870158i \(-0.664017\pi\)
−0.492773 + 0.870158i \(0.664017\pi\)
\(588\) −20.4294 −0.0347439
\(589\) 1556.71i 2.64296i
\(590\) 816.945i 1.38465i
\(591\) 10.3344i 0.0174863i
\(592\) 385.090 0.650489
\(593\) 333.857i 0.562997i 0.959562 + 0.281499i \(0.0908314\pi\)
−0.959562 + 0.281499i \(0.909169\pi\)
\(594\) 128.412 + 39.9532i 0.216181 + 0.0672612i
\(595\) −219.846 −0.369489
\(596\) 193.205i 0.324170i
\(597\) −405.397 −0.679058
\(598\) −572.767 −0.957804
\(599\) −846.483 −1.41316 −0.706580 0.707633i \(-0.749763\pi\)
−0.706580 + 0.707633i \(0.749763\pi\)
\(600\) 74.2323i 0.123721i
\(601\) 455.011i 0.757089i 0.925583 + 0.378545i \(0.123575\pi\)
−0.925583 + 0.378545i \(0.876425\pi\)
\(602\) 1237.82i 2.05618i
\(603\) −102.000 −0.169154
\(604\) 422.738i 0.699897i
\(605\) 418.109 + 288.061i 0.691089 + 0.476134i
\(606\) −213.331 −0.352031
\(607\) 726.557i 1.19696i 0.801137 + 0.598482i \(0.204229\pi\)
−0.801137 + 0.598482i \(0.795771\pi\)
\(608\) 710.554 1.16867
\(609\) −76.7077 −0.125957
\(610\) −744.564 −1.22060
\(611\) 232.178i 0.379997i
\(612\) 37.5551i 0.0613645i
\(613\) 574.532i 0.937247i 0.883398 + 0.468624i \(0.155250\pi\)
−0.883398 + 0.468624i \(0.844750\pi\)
\(614\) 136.992 0.223114
\(615\) 348.716i 0.567018i
\(616\) 121.790 391.439i 0.197711 0.635452i
\(617\) −278.946 −0.452101 −0.226050 0.974116i \(-0.572581\pi\)
−0.226050 + 0.974116i \(0.572581\pi\)
\(618\) 19.3417i 0.0312973i
\(619\) −593.061 −0.958096 −0.479048 0.877789i \(-0.659018\pi\)
−0.479048 + 0.877789i \(0.659018\pi\)
\(620\) 329.828 0.531981
\(621\) −164.512 −0.264914
\(622\) 488.478i 0.785335i
\(623\) 288.127i 0.462484i
\(624\) 263.486i 0.422253i
\(625\) −385.546 −0.616874
\(626\) 886.312i 1.41583i
\(627\) 553.377 + 172.174i 0.882579 + 0.274600i
\(628\) 419.513 0.668014
\(629\) 158.642i 0.252214i
\(630\) −190.392 −0.302210
\(631\) −361.664 −0.573160 −0.286580 0.958056i \(-0.592518\pi\)
−0.286580 + 0.958056i \(0.592518\pi\)
\(632\) 141.045 0.223172
\(633\) 290.064i 0.458237i
\(634\) 580.704i 0.915937i
\(635\) 117.576i 0.185159i
\(636\) −69.3064 −0.108972
\(637\) 59.0475i 0.0926963i
\(638\) 52.9742 170.262i 0.0830317 0.266868i
\(639\) −218.196 −0.341465
\(640\) 630.778i 0.985590i
\(641\) 784.382 1.22368 0.611842 0.790980i \(-0.290429\pi\)
0.611842 + 0.790980i \(0.290429\pi\)
\(642\) −602.008 −0.937706
\(643\) 362.764 0.564174 0.282087 0.959389i \(-0.408973\pi\)
0.282087 + 0.959389i \(0.408973\pi\)
\(644\) 312.579i 0.485371i
\(645\) 594.830i 0.922217i
\(646\) 583.325i 0.902981i
\(647\) 921.727 1.42462 0.712308 0.701867i \(-0.247650\pi\)
0.712308 + 0.701867i \(0.247650\pi\)
\(648\) 52.1789i 0.0805230i
\(649\) 270.410 869.112i 0.416657 1.33916i
\(650\) −133.734 −0.205745
\(651\) 569.794i 0.875259i
\(652\) −95.3281 −0.146209
\(653\) 26.8653 0.0411414 0.0205707 0.999788i \(-0.493452\pi\)
0.0205707 + 0.999788i \(0.493452\pi\)
\(654\) 14.5424 0.0222361
\(655\) 474.938i 0.725096i
\(656\) 949.266i 1.44705i
\(657\) 164.609i 0.250546i
\(658\) 456.697 0.694069
\(659\) 320.820i 0.486828i −0.969922 0.243414i \(-0.921733\pi\)
0.969922 0.243414i \(-0.0782674\pi\)
\(660\) 36.4796 117.247i 0.0552721 0.177647i
\(661\) 331.969 0.502222 0.251111 0.967958i \(-0.419204\pi\)
0.251111 + 0.967958i \(0.419204\pi\)
\(662\) 344.530i 0.520437i
\(663\) 108.546 0.163720
\(664\) 5.35144 0.00805939
\(665\) −820.477 −1.23380
\(666\) 137.388i 0.206289i
\(667\) 218.127i 0.327027i
\(668\) 73.6924i 0.110318i
\(669\) 142.526 0.213043
\(670\) 335.679i 0.501013i
\(671\) −792.109 246.452i −1.18049 0.367290i
\(672\) −260.081 −0.387025
\(673\) 797.019i 1.18428i 0.805836 + 0.592139i \(0.201716\pi\)
−0.805836 + 0.592139i \(0.798284\pi\)
\(674\) 832.925 1.23579
\(675\) −38.4115 −0.0569060
\(676\) −168.764 −0.249650
\(677\) 534.175i 0.789033i −0.918889 0.394516i \(-0.870912\pi\)
0.918889 0.394516i \(-0.129088\pi\)
\(678\) 253.951i 0.374559i
\(679\) 136.622i 0.201211i
\(680\) 198.284 0.291595
\(681\) 71.0139i 0.104279i
\(682\) 1264.73 + 393.499i 1.85444 + 0.576978i
\(683\) −843.097 −1.23440 −0.617201 0.786805i \(-0.711734\pi\)
−0.617201 + 0.786805i \(0.711734\pi\)
\(684\) 140.157i 0.204908i
\(685\) 297.023 0.433610
\(686\) 857.241 1.24962
\(687\) 278.372 0.405199
\(688\) 1619.23i 2.35353i
\(689\) 200.318i 0.290737i
\(690\) 541.403i 0.784641i
\(691\) −193.615 −0.280196 −0.140098 0.990138i \(-0.544742\pi\)
−0.140098 + 0.990138i \(0.544742\pi\)
\(692\) 219.660i 0.317427i
\(693\) −202.550 63.0201i −0.292280 0.0909382i
\(694\) −1246.56 −1.79619
\(695\) 547.592i 0.787903i
\(696\) 69.1845 0.0994030
\(697\) 391.061 0.561064
\(698\) −806.729 −1.15577
\(699\) 706.597i 1.01087i
\(700\) 72.9836i 0.104262i
\(701\) 448.863i 0.640318i −0.947364 0.320159i \(-0.896264\pi\)
0.947364 0.320159i \(-0.103736\pi\)
\(702\) 94.0038 0.133909
\(703\) 592.061i 0.842192i
\(704\) −79.0089 + 253.939i −0.112229 + 0.360708i
\(705\) −219.464 −0.311297
\(706\) 451.723i 0.639834i
\(707\) 336.497 0.475951
\(708\) −220.126 −0.310912
\(709\) −311.031 −0.438689 −0.219345 0.975647i \(-0.570392\pi\)
−0.219345 + 0.975647i \(0.570392\pi\)
\(710\) 718.077i 1.01138i
\(711\) 72.9836i 0.102649i
\(712\) 259.869i 0.364985i
\(713\) −1620.27 −2.27247
\(714\) 213.512i 0.299036i
\(715\) 338.882 + 105.438i 0.473961 + 0.147465i
\(716\) −56.2178 −0.0785165
\(717\) 350.315i 0.488584i
\(718\) −1415.60 −1.97159
\(719\) 486.014 0.675958 0.337979 0.941154i \(-0.390257\pi\)
0.337979 + 0.941154i \(0.390257\pi\)
\(720\) 249.058 0.345913
\(721\) 30.5086i 0.0423143i
\(722\) 1327.62i 1.83881i
\(723\) 46.5623i 0.0644016i
\(724\) 129.279 0.178563
\(725\) 50.9302i 0.0702485i
\(726\) 279.762 406.062i 0.385347 0.559315i
\(727\) 38.8616 0.0534547 0.0267273 0.999643i \(-0.491491\pi\)
0.0267273 + 0.999643i \(0.491491\pi\)
\(728\) 286.553i 0.393617i
\(729\) 27.0000 0.0370370
\(730\) −541.723 −0.742086
\(731\) −667.061 −0.912533
\(732\) 200.623i 0.274075i
\(733\) 175.562i 0.239511i 0.992803 + 0.119756i \(0.0382111\pi\)
−0.992803 + 0.119756i \(0.961789\pi\)
\(734\) 328.023i 0.446898i
\(735\) −55.8142 −0.0759376
\(736\) 739.570i 1.00485i
\(737\) −111.110 + 357.114i −0.150760 + 0.484551i
\(738\) 338.669 0.458901
\(739\) 494.527i 0.669184i −0.942363 0.334592i \(-0.891402\pi\)
0.942363 0.334592i \(-0.108598\pi\)
\(740\) −125.443 −0.169518
\(741\) 405.100 0.546694
\(742\) 394.028 0.531035
\(743\) 1150.84i 1.54892i 0.632625 + 0.774458i \(0.281977\pi\)
−0.632625 + 0.774458i \(0.718023\pi\)
\(744\) 513.910i 0.690740i
\(745\) 527.846i 0.708519i
\(746\) −714.393 −0.957632
\(747\) 2.76910i 0.00370696i
\(748\) −131.485 40.9093i −0.175782 0.0546916i
\(749\) 949.577 1.26779
\(750\) 553.921i 0.738561i
\(751\) 1343.73 1.78926 0.894628 0.446813i \(-0.147441\pi\)
0.894628 + 0.446813i \(0.147441\pi\)
\(752\) −597.419 −0.794440
\(753\) 689.836 0.916117
\(754\) 124.640i 0.165306i
\(755\) 1154.94i 1.52972i
\(756\) 51.3012i 0.0678587i
\(757\) 1034.58 1.36669 0.683343 0.730097i \(-0.260525\pi\)
0.683343 + 0.730097i \(0.260525\pi\)
\(758\) 1623.57i 2.14192i
\(759\) −179.205 + 575.974i −0.236107 + 0.758859i
\(760\) 740.008 0.973694
\(761\) 798.527i 1.04931i −0.851314 0.524656i \(-0.824194\pi\)
0.851314 0.524656i \(-0.175806\pi\)
\(762\) −114.189 −0.149854
\(763\) −22.9385 −0.0300636
\(764\) −67.9399 −0.0889266
\(765\) 102.602i 0.134121i
\(766\) 125.307i 0.163586i
\(767\) 636.234i 0.829510i
\(768\) 445.101 0.579559
\(769\) 261.311i 0.339806i −0.985461 0.169903i \(-0.945655\pi\)
0.985461 0.169903i \(-0.0543455\pi\)
\(770\) −207.397 + 666.586i −0.269347 + 0.865696i
\(771\) −585.118 −0.758908
\(772\) 209.078i 0.270826i
\(773\) −327.734 −0.423977 −0.211989 0.977272i \(-0.567994\pi\)
−0.211989 + 0.977272i \(0.567994\pi\)
\(774\) −577.692 −0.746372
\(775\) −378.315 −0.488149
\(776\) 123.223i 0.158792i
\(777\) 216.709i 0.278905i
\(778\) 1381.19i 1.77530i
\(779\) 1459.46 1.87351
\(780\) 85.8309i 0.110040i
\(781\) −237.685 + 763.931i −0.304334 + 0.978144i
\(782\) 607.146 0.776402
\(783\) 35.7995i 0.0457210i
\(784\) −151.936 −0.193796
\(785\) 1146.13 1.46004
\(786\) 461.254 0.586837
\(787\) 289.388i 0.367711i −0.982953 0.183855i \(-0.941142\pi\)
0.982953 0.183855i \(-0.0588578\pi\)
\(788\) 9.16407i 0.0116295i
\(789\) 233.010i 0.295324i
\(790\) −240.187 −0.304034
\(791\) 400.570i 0.506409i
\(792\) 182.685 + 56.8394i 0.230662 + 0.0717669i
\(793\) −579.864 −0.731228
\(794\) 1143.01i 1.43956i
\(795\) −189.349 −0.238174
\(796\) 359.487 0.451617
\(797\) 113.681 0.142636 0.0713180 0.997454i \(-0.477279\pi\)
0.0713180 + 0.997454i \(0.477279\pi\)
\(798\) 796.837i 0.998543i
\(799\) 246.114i 0.308028i
\(800\) 172.681i 0.215851i
\(801\) 134.469 0.167877
\(802\) 391.677i 0.488375i
\(803\) −576.315 179.311i −0.717703 0.223302i
\(804\) 90.4486 0.112498
\(805\) 853.982i 1.06085i
\(806\) 925.843 1.14869
\(807\) −592.137 −0.733751
\(808\) −303.495 −0.375613
\(809\) 854.163i 1.05583i −0.849299 0.527913i \(-0.822975\pi\)
0.849299 0.527913i \(-0.177025\pi\)
\(810\) 88.8562i 0.109699i
\(811\) 486.533i 0.599917i 0.953952 + 0.299959i \(0.0969729\pi\)
−0.953952 + 0.299959i \(0.903027\pi\)
\(812\) 68.0206 0.0837692
\(813\) 369.443i 0.454419i
\(814\) −481.013 149.659i −0.590925 0.183857i
\(815\) −260.441 −0.319560
\(816\) 279.301i 0.342281i
\(817\) −2489.51 −3.04713
\(818\) 635.649 0.777077
\(819\) −148.277 −0.181046
\(820\) 309.225i 0.377103i
\(821\) 527.104i 0.642027i 0.947075 + 0.321014i \(0.104024\pi\)
−0.947075 + 0.321014i \(0.895976\pi\)
\(822\) 288.465i 0.350931i
\(823\) −314.805 −0.382509 −0.191255 0.981540i \(-0.561256\pi\)
−0.191255 + 0.981540i \(0.561256\pi\)
\(824\) 27.5165i 0.0333938i
\(825\) −41.8423 + 134.483i −0.0507180 + 0.163010i
\(826\) 1251.48 1.51511
\(827\) 111.652i 0.135008i −0.997719 0.0675040i \(-0.978496\pi\)
0.997719 0.0675040i \(-0.0215035\pi\)
\(828\) 145.881 0.176185
\(829\) −695.395 −0.838836 −0.419418 0.907793i \(-0.637766\pi\)
−0.419418 + 0.907793i \(0.637766\pi\)
\(830\) −9.11303 −0.0109796
\(831\) 146.495i 0.176288i
\(832\) 185.896i 0.223433i
\(833\) 62.5918i 0.0751402i
\(834\) −531.815 −0.637668
\(835\) 201.331i 0.241116i
\(836\) −490.708 152.676i −0.586971 0.182626i
\(837\) 265.923 0.317710
\(838\) 839.098i 1.00131i
\(839\) −383.968 −0.457650 −0.228825 0.973468i \(-0.573488\pi\)
−0.228825 + 0.973468i \(0.573488\pi\)
\(840\) −270.862 −0.322454
\(841\) 793.533 0.943559
\(842\) 1087.58i 1.29166i
\(843\) 608.205i 0.721477i
\(844\) 257.215i 0.304757i
\(845\) −461.071 −0.545646
\(846\) 213.141i 0.251940i
\(847\) −441.282 + 640.503i −0.520994 + 0.756202i
\(848\) −515.440 −0.607830
\(849\) 495.269i 0.583355i
\(850\) 141.762 0.166778
\(851\) 616.238 0.724134
\(852\) 193.486 0.227096
\(853\) 570.527i 0.668847i −0.942423 0.334424i \(-0.891458\pi\)
0.942423 0.334424i \(-0.108542\pi\)
\(854\) 1140.60i 1.33560i
\(855\) 382.917i 0.447856i
\(856\) −856.446 −1.00052
\(857\) 315.553i 0.368207i −0.982907 0.184103i \(-0.941062\pi\)
0.982907 0.184103i \(-0.0589382\pi\)
\(858\) 102.400 329.118i 0.119347 0.383588i
\(859\) −107.923 −0.125638 −0.0628190 0.998025i \(-0.520009\pi\)
−0.0628190 + 0.998025i \(0.520009\pi\)
\(860\) 527.467i 0.613333i
\(861\) −534.200 −0.620441
\(862\) −469.515 −0.544681
\(863\) 1431.55 1.65881 0.829403 0.558651i \(-0.188681\pi\)
0.829403 + 0.558651i \(0.188681\pi\)
\(864\) 121.380i 0.140486i
\(865\) 600.121i 0.693782i
\(866\) 106.747i 0.123265i
\(867\) 385.501 0.444638
\(868\) 505.265i 0.582103i
\(869\) −255.524 79.5022i −0.294044 0.0914870i
\(870\) −117.815 −0.135420
\(871\) 261.426i 0.300144i
\(872\) 20.6888 0.0237257
\(873\) −63.7616 −0.0730373
\(874\) 2265.90 2.59256
\(875\) 873.727i 0.998546i
\(876\) 145.967i 0.166629i
\(877\) 567.758i 0.647386i 0.946162 + 0.323693i \(0.104925\pi\)
−0.946162 + 0.323693i \(0.895075\pi\)
\(878\) −1140.26 −1.29870
\(879\) 682.302i 0.776225i
\(880\) 271.303 871.981i 0.308298 0.990887i
\(881\) 488.641 0.554644 0.277322 0.960777i \(-0.410553\pi\)
0.277322 + 0.960777i \(0.410553\pi\)
\(882\) 54.2061i 0.0614581i
\(883\) 840.144 0.951465 0.475732 0.879590i \(-0.342183\pi\)
0.475732 + 0.879590i \(0.342183\pi\)
\(884\) −96.2535 −0.108884
\(885\) −601.395 −0.679542
\(886\) 883.585i 0.997274i
\(887\) 981.439i 1.10647i 0.833025 + 0.553235i \(0.186607\pi\)
−0.833025 + 0.553235i \(0.813393\pi\)
\(888\) 195.455i 0.220107i
\(889\) 180.115 0.202605
\(890\) 442.534i 0.497230i
\(891\) 29.4115 94.5302i 0.0330096 0.106095i
\(892\) −126.385 −0.141687
\(893\) 918.510i 1.02857i
\(894\) −512.638 −0.573421
\(895\) −153.590 −0.171609
\(896\) −966.291 −1.07845
\(897\) 421.642i 0.470059i
\(898\) 907.343i 1.01040i
\(899\) 352.589i 0.392202i
\(900\) 34.0615 0.0378461
\(901\) 212.342i 0.235673i
\(902\) 368.918 1185.72i 0.409000 1.31455i
\(903\) 911.223 1.00911
\(904\) 361.283i 0.399650i
\(905\) 353.198 0.390274
\(906\) 1121.67 1.23804
\(907\) 438.610 0.483583 0.241792 0.970328i \(-0.422265\pi\)
0.241792 + 0.970328i \(0.422265\pi\)
\(908\) 62.9716i 0.0693520i
\(909\) 157.044i 0.172765i
\(910\) 487.975i 0.536236i
\(911\) −170.042 −0.186654 −0.0933272 0.995635i \(-0.529750\pi\)
−0.0933272 + 0.995635i \(0.529750\pi\)
\(912\) 1042.37i 1.14295i
\(913\) −9.69496 3.01643i −0.0106188 0.00330386i
\(914\) 890.243 0.974008
\(915\) 548.111i 0.599029i
\(916\) −246.846 −0.269483
\(917\) −727.559 −0.793412
\(918\) −99.6462 −0.108547
\(919\) 1089.73i 1.18578i 0.805285 + 0.592888i \(0.202012\pi\)
−0.805285 + 0.592888i \(0.797988\pi\)
\(920\) 770.226i 0.837202i
\(921\) 100.847i 0.109497i
\(922\) −528.267 −0.572957
\(923\) 559.236i 0.605890i
\(924\) 179.611 + 55.8832i 0.194385 + 0.0604796i
\(925\) 143.885 0.155551
\(926\) 123.247i 0.133096i
\(927\) −14.2384 −0.0153597
\(928\) −160.939 −0.173425
\(929\) 769.446 0.828252 0.414126 0.910220i \(-0.364087\pi\)
0.414126 + 0.910220i \(0.364087\pi\)
\(930\) 875.145i 0.941016i
\(931\) 233.596i 0.250908i
\(932\) 626.576i 0.672291i
\(933\) 359.594 0.385417
\(934\) 1207.92i 1.29328i
\(935\) −359.223 111.766i −0.384196 0.119536i
\(936\) 133.734 0.142879
\(937\) 1606.78i 1.71481i −0.514641 0.857406i \(-0.672075\pi\)
0.514641 0.857406i \(-0.327925\pi\)
\(938\) −514.228 −0.548218
\(939\) −652.459 −0.694844
\(940\) 194.610 0.207032
\(941\) 1279.34i 1.35955i 0.733419 + 0.679777i \(0.237923\pi\)
−0.733419 + 0.679777i \(0.762077\pi\)
\(942\) 1113.11i 1.18164i
\(943\) 1519.06i 1.61088i
\(944\) −1637.10 −1.73422
\(945\) 140.157i 0.148315i
\(946\) −629.290 + 2022.57i −0.665211 + 2.13802i
\(947\) −985.800 −1.04097 −0.520486 0.853870i \(-0.674249\pi\)
−0.520486 + 0.853870i \(0.674249\pi\)
\(948\) 64.7183i 0.0682682i
\(949\) −421.892 −0.444565
\(950\) 529.061 0.556907
\(951\) 427.486 0.449512
\(952\) 303.753i 0.319068i
\(953\) 761.038i 0.798571i −0.916827 0.399285i \(-0.869258\pi\)
0.916827 0.399285i \(-0.130742\pi\)
\(954\) 183.893i 0.192760i
\(955\) −185.615 −0.194362
\(956\) 310.642i 0.324940i
\(957\) −125.338 38.9970i −0.130970 0.0407492i
\(958\) 561.695 0.586320
\(959\) 455.011i 0.474464i
\(960\) 175.717 0.183038
\(961\) 1658.08 1.72537
\(962\) −352.126 −0.366035
\(963\) 443.168i 0.460195i
\(964\) 41.2892i 0.0428311i
\(965\) 571.211i 0.591929i
\(966\) −829.377 −0.858568
\(967\) 702.938i 0.726926i −0.931609 0.363463i \(-0.881594\pi\)
0.931609 0.363463i \(-0.118406\pi\)
\(968\) 398.003 577.685i 0.411160 0.596782i
\(969\) −429.415 −0.443153
\(970\) 209.838i 0.216327i
\(971\) −1289.42 −1.32793 −0.663963 0.747766i \(-0.731127\pi\)
−0.663963 + 0.747766i \(0.731127\pi\)
\(972\) −23.9423 −0.0246320
\(973\) 838.859 0.862136
\(974\) 1395.83i 1.43309i
\(975\) 98.4487i 0.100973i
\(976\) 1492.05i 1.52874i
\(977\) −690.526 −0.706782 −0.353391 0.935476i \(-0.614971\pi\)
−0.353391 + 0.935476i \(0.614971\pi\)
\(978\) 252.937i 0.258627i
\(979\) 146.480 470.793i 0.149622 0.480892i
\(980\) 49.4933 0.0505033
\(981\) 10.7054i 0.0109128i
\(982\) 2020.94 2.05799
\(983\) 1080.40 1.09908 0.549540 0.835467i \(-0.314803\pi\)
0.549540 + 0.835467i \(0.314803\pi\)
\(984\) 481.808 0.489642
\(985\) 25.0367i 0.0254180i
\(986\) 132.122i 0.133998i
\(987\) 336.198i 0.340626i
\(988\) −359.223 −0.363586
\(989\) 2591.17i 2.61999i
\(990\) −311.096 96.7925i −0.314239 0.0977702i
\(991\) −686.561 −0.692796 −0.346398 0.938088i \(-0.612595\pi\)
−0.346398 + 0.938088i \(0.612595\pi\)
\(992\) 1195.47i 1.20511i
\(993\) 253.626 0.255413
\(994\) −1100.03 −1.10667
\(995\) 982.136 0.987071
\(996\) 2.45551i 0.00246537i
\(997\) 1413.50i 1.41775i −0.705333 0.708876i \(-0.749203\pi\)
0.705333 0.708876i \(-0.250797\pi\)
\(998\) 1890.97i 1.89476i
\(999\) −101.138 −0.101240
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 33.3.c.a.10.3 yes 4
3.2 odd 2 99.3.c.b.10.2 4
4.3 odd 2 528.3.j.c.241.2 4
5.2 odd 4 825.3.h.a.274.3 8
5.3 odd 4 825.3.h.a.274.6 8
5.4 even 2 825.3.b.a.76.2 4
8.3 odd 2 2112.3.j.d.769.4 4
8.5 even 2 2112.3.j.a.769.1 4
11.2 odd 10 363.3.g.e.40.2 16
11.3 even 5 363.3.g.e.112.3 16
11.4 even 5 363.3.g.e.94.2 16
11.5 even 5 363.3.g.e.118.2 16
11.6 odd 10 363.3.g.e.118.3 16
11.7 odd 10 363.3.g.e.94.3 16
11.8 odd 10 363.3.g.e.112.2 16
11.9 even 5 363.3.g.e.40.3 16
11.10 odd 2 inner 33.3.c.a.10.2 4
12.11 even 2 1584.3.j.f.1297.4 4
33.32 even 2 99.3.c.b.10.3 4
44.43 even 2 528.3.j.c.241.1 4
55.32 even 4 825.3.h.a.274.5 8
55.43 even 4 825.3.h.a.274.4 8
55.54 odd 2 825.3.b.a.76.3 4
88.21 odd 2 2112.3.j.a.769.2 4
88.43 even 2 2112.3.j.d.769.3 4
132.131 odd 2 1584.3.j.f.1297.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.3.c.a.10.2 4 11.10 odd 2 inner
33.3.c.a.10.3 yes 4 1.1 even 1 trivial
99.3.c.b.10.2 4 3.2 odd 2
99.3.c.b.10.3 4 33.32 even 2
363.3.g.e.40.2 16 11.2 odd 10
363.3.g.e.40.3 16 11.9 even 5
363.3.g.e.94.2 16 11.4 even 5
363.3.g.e.94.3 16 11.7 odd 10
363.3.g.e.112.2 16 11.8 odd 10
363.3.g.e.112.3 16 11.3 even 5
363.3.g.e.118.2 16 11.5 even 5
363.3.g.e.118.3 16 11.6 odd 10
528.3.j.c.241.1 4 44.43 even 2
528.3.j.c.241.2 4 4.3 odd 2
825.3.b.a.76.2 4 5.4 even 2
825.3.b.a.76.3 4 55.54 odd 2
825.3.h.a.274.3 8 5.2 odd 4
825.3.h.a.274.4 8 55.43 even 4
825.3.h.a.274.5 8 55.32 even 4
825.3.h.a.274.6 8 5.3 odd 4
1584.3.j.f.1297.3 4 132.131 odd 2
1584.3.j.f.1297.4 4 12.11 even 2
2112.3.j.a.769.1 4 8.5 even 2
2112.3.j.a.769.2 4 88.21 odd 2
2112.3.j.d.769.3 4 88.43 even 2
2112.3.j.d.769.4 4 8.3 odd 2