Properties

Label 1584.3.j.f.1297.3
Level $1584$
Weight $3$
Character 1584.1297
Analytic conductor $43.161$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1584,3,Mod(1297,1584)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1584, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1584.1297");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1584 = 2^{4} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1584.j (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(43.1608738747\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.0.39744.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} + 12x^{2} + 4x + 22 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1297.3
Root \(1.36603 + 3.21405i\) of defining polynomial
Character \(\chi\) \(=\) 1584.1297
Dual form 1584.3.j.f.1297.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.19615 q^{5} -6.42810i q^{7} +(3.26795 + 10.5034i) q^{11} +7.68899i q^{13} +8.15051i q^{17} +30.4181i q^{19} -31.6603 q^{23} -7.39230 q^{25} -6.88962i q^{29} -51.1769 q^{31} -26.9733i q^{35} -19.4641 q^{37} -47.9800i q^{41} +81.8429i q^{43} +30.1962 q^{47} +7.67949 q^{49} -26.0526 q^{53} +(13.7128 + 44.0737i) q^{55} +82.7461 q^{59} +75.4148i q^{61} +32.2642i q^{65} +34.0000 q^{67} -72.7321 q^{71} +54.8696i q^{73} +(67.5167 - 21.0067i) q^{77} -24.3279i q^{79} +0.923034i q^{83} +34.2008i q^{85} -44.8231 q^{89} +49.4256 q^{91} +127.639i q^{95} -21.2539 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{5} + 20 q^{11} - 92 q^{23} + 12 q^{25} - 80 q^{31} - 64 q^{37} + 100 q^{47} + 100 q^{49} - 28 q^{53} - 56 q^{55} + 40 q^{59} + 136 q^{67} - 284 q^{71} + 180 q^{77} - 304 q^{89} - 24 q^{91} - 376 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1584\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(353\) \(991\) \(1189\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 4.19615 0.839230 0.419615 0.907702i \(-0.362165\pi\)
0.419615 + 0.907702i \(0.362165\pi\)
\(6\) 0 0
\(7\) 6.42810i 0.918300i −0.888359 0.459150i \(-0.848154\pi\)
0.888359 0.459150i \(-0.151846\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.26795 + 10.5034i 0.297086 + 0.954851i
\(12\) 0 0
\(13\) 7.68899i 0.591461i 0.955271 + 0.295730i \(0.0955630\pi\)
−0.955271 + 0.295730i \(0.904437\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 8.15051i 0.479442i 0.970842 + 0.239721i \(0.0770559\pi\)
−0.970842 + 0.239721i \(0.922944\pi\)
\(18\) 0 0
\(19\) 30.4181i 1.60095i 0.599364 + 0.800477i \(0.295420\pi\)
−0.599364 + 0.800477i \(0.704580\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −31.6603 −1.37653 −0.688266 0.725458i \(-0.741628\pi\)
−0.688266 + 0.725458i \(0.741628\pi\)
\(24\) 0 0
\(25\) −7.39230 −0.295692
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.88962i 0.237573i −0.992920 0.118787i \(-0.962100\pi\)
0.992920 0.118787i \(-0.0379004\pi\)
\(30\) 0 0
\(31\) −51.1769 −1.65087 −0.825434 0.564498i \(-0.809070\pi\)
−0.825434 + 0.564498i \(0.809070\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 26.9733i 0.770666i
\(36\) 0 0
\(37\) −19.4641 −0.526057 −0.263028 0.964788i \(-0.584721\pi\)
−0.263028 + 0.964788i \(0.584721\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 47.9800i 1.17024i −0.810945 0.585122i \(-0.801047\pi\)
0.810945 0.585122i \(-0.198953\pi\)
\(42\) 0 0
\(43\) 81.8429i 1.90332i 0.307147 + 0.951662i \(0.400626\pi\)
−0.307147 + 0.951662i \(0.599374\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 30.1962 0.642471 0.321236 0.946999i \(-0.395902\pi\)
0.321236 + 0.946999i \(0.395902\pi\)
\(48\) 0 0
\(49\) 7.67949 0.156724
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −26.0526 −0.491558 −0.245779 0.969326i \(-0.579044\pi\)
−0.245779 + 0.969326i \(0.579044\pi\)
\(54\) 0 0
\(55\) 13.7128 + 44.0737i 0.249324 + 0.801340i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 82.7461 1.40248 0.701238 0.712927i \(-0.252631\pi\)
0.701238 + 0.712927i \(0.252631\pi\)
\(60\) 0 0
\(61\) 75.4148i 1.23631i 0.786057 + 0.618154i \(0.212119\pi\)
−0.786057 + 0.618154i \(0.787881\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 32.2642i 0.496372i
\(66\) 0 0
\(67\) 34.0000 0.507463 0.253731 0.967275i \(-0.418342\pi\)
0.253731 + 0.967275i \(0.418342\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −72.7321 −1.02440 −0.512198 0.858868i \(-0.671168\pi\)
−0.512198 + 0.858868i \(0.671168\pi\)
\(72\) 0 0
\(73\) 54.8696i 0.751639i 0.926693 + 0.375819i \(0.122639\pi\)
−0.926693 + 0.375819i \(0.877361\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 67.5167 21.0067i 0.876840 0.272814i
\(78\) 0 0
\(79\) 24.3279i 0.307948i −0.988075 0.153974i \(-0.950793\pi\)
0.988075 0.153974i \(-0.0492071\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0.923034i 0.0111209i 0.999985 + 0.00556045i \(0.00176995\pi\)
−0.999985 + 0.00556045i \(0.998230\pi\)
\(84\) 0 0
\(85\) 34.2008i 0.402362i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −44.8231 −0.503630 −0.251815 0.967775i \(-0.581027\pi\)
−0.251815 + 0.967775i \(0.581027\pi\)
\(90\) 0 0
\(91\) 49.4256 0.543139
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 127.639i 1.34357i
\(96\) 0 0
\(97\) −21.2539 −0.219112 −0.109556 0.993981i \(-0.534943\pi\)
−0.109556 + 0.993981i \(0.534943\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 52.3479i 0.518296i 0.965838 + 0.259148i \(0.0834417\pi\)
−0.965838 + 0.259148i \(0.916558\pi\)
\(102\) 0 0
\(103\) 4.74613 0.0460790 0.0230395 0.999735i \(-0.492666\pi\)
0.0230395 + 0.999735i \(0.492666\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 147.723i 1.38059i −0.723530 0.690293i \(-0.757482\pi\)
0.723530 0.690293i \(-0.242518\pi\)
\(108\) 0 0
\(109\) 3.56847i 0.0327383i 0.999866 + 0.0163691i \(0.00521069\pi\)
−0.999866 + 0.0163691i \(0.994789\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 62.3154 0.551463 0.275732 0.961235i \(-0.411080\pi\)
0.275732 + 0.961235i \(0.411080\pi\)
\(114\) 0 0
\(115\) −132.851 −1.15523
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 52.3923 0.440271
\(120\) 0 0
\(121\) −99.6410 + 68.6489i −0.823479 + 0.567346i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −135.923 −1.08738
\(126\) 0 0
\(127\) 28.0200i 0.220630i 0.993897 + 0.110315i \(0.0351860\pi\)
−0.993897 + 0.110315i \(0.964814\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 113.184i 0.864001i 0.901873 + 0.432000i \(0.142192\pi\)
−0.901873 + 0.432000i \(0.857808\pi\)
\(132\) 0 0
\(133\) 195.531 1.47016
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 70.7846 0.516676 0.258338 0.966055i \(-0.416825\pi\)
0.258338 + 0.966055i \(0.416825\pi\)
\(138\) 0 0
\(139\) 130.499i 0.938839i 0.882975 + 0.469420i \(0.155537\pi\)
−0.882975 + 0.469420i \(0.844463\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −80.7602 + 25.1272i −0.564757 + 0.175715i
\(144\) 0 0
\(145\) 28.9099i 0.199379i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 125.793i 0.844248i 0.906538 + 0.422124i \(0.138715\pi\)
−0.906538 + 0.422124i \(0.861285\pi\)
\(150\) 0 0
\(151\) 275.238i 1.82277i −0.411556 0.911384i \(-0.635015\pi\)
0.411556 0.911384i \(-0.364985\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −214.746 −1.38546
\(156\) 0 0
\(157\) −273.138 −1.73974 −0.869868 0.493285i \(-0.835796\pi\)
−0.869868 + 0.493285i \(0.835796\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 203.515i 1.26407i
\(162\) 0 0
\(163\) −62.0666 −0.380777 −0.190388 0.981709i \(-0.560975\pi\)
−0.190388 + 0.981709i \(0.560975\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 47.9800i 0.287305i 0.989628 + 0.143653i \(0.0458848\pi\)
−0.989628 + 0.143653i \(0.954115\pi\)
\(168\) 0 0
\(169\) 109.879 0.650174
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 143.017i 0.826688i 0.910575 + 0.413344i \(0.135639\pi\)
−0.910575 + 0.413344i \(0.864361\pi\)
\(174\) 0 0
\(175\) 47.5185i 0.271534i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 36.6025 0.204483 0.102242 0.994760i \(-0.467398\pi\)
0.102242 + 0.994760i \(0.467398\pi\)
\(180\) 0 0
\(181\) −84.1718 −0.465037 −0.232519 0.972592i \(-0.574697\pi\)
−0.232519 + 0.972592i \(0.574697\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −81.6743 −0.441483
\(186\) 0 0
\(187\) −85.6077 + 26.6354i −0.457795 + 0.142436i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 44.2346 0.231595 0.115797 0.993273i \(-0.463058\pi\)
0.115797 + 0.993273i \(0.463058\pi\)
\(192\) 0 0
\(193\) 136.127i 0.705323i 0.935751 + 0.352662i \(0.114723\pi\)
−0.935751 + 0.352662i \(0.885277\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.96659i 0.0302872i 0.999885 + 0.0151436i \(0.00482055\pi\)
−0.999885 + 0.0151436i \(0.995179\pi\)
\(198\) 0 0
\(199\) 234.056 1.17616 0.588081 0.808802i \(-0.299884\pi\)
0.588081 + 0.808802i \(0.299884\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −44.2872 −0.218163
\(204\) 0 0
\(205\) 201.331i 0.982105i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −319.492 + 99.4048i −1.52867 + 0.475621i
\(210\) 0 0
\(211\) 167.469i 0.793690i 0.917886 + 0.396845i \(0.129895\pi\)
−0.917886 + 0.396845i \(0.870105\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 343.425i 1.59733i
\(216\) 0 0
\(217\) 328.970i 1.51599i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −62.6692 −0.283571
\(222\) 0 0
\(223\) −82.2872 −0.369001 −0.184500 0.982832i \(-0.559067\pi\)
−0.184500 + 0.982832i \(0.559067\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 40.9999i 0.180616i −0.995914 0.0903081i \(-0.971215\pi\)
0.995914 0.0903081i \(-0.0287852\pi\)
\(228\) 0 0
\(229\) 160.718 0.701825 0.350913 0.936408i \(-0.385871\pi\)
0.350913 + 0.936408i \(0.385871\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 407.954i 1.75087i −0.483332 0.875437i \(-0.660573\pi\)
0.483332 0.875437i \(-0.339427\pi\)
\(234\) 0 0
\(235\) 126.708 0.539182
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 202.254i 0.846253i 0.906071 + 0.423127i \(0.139067\pi\)
−0.906071 + 0.423127i \(0.860933\pi\)
\(240\) 0 0
\(241\) 26.8828i 0.111547i 0.998443 + 0.0557734i \(0.0177624\pi\)
−0.998443 + 0.0557734i \(0.982238\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 32.2243 0.131528
\(246\) 0 0
\(247\) −233.885 −0.946901
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 398.277 1.58676 0.793380 0.608726i \(-0.208319\pi\)
0.793380 + 0.608726i \(0.208319\pi\)
\(252\) 0 0
\(253\) −103.464 332.539i −0.408949 1.31438i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 337.818 1.31447 0.657233 0.753687i \(-0.271727\pi\)
0.657233 + 0.753687i \(0.271727\pi\)
\(258\) 0 0
\(259\) 125.117i 0.483078i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 134.529i 0.511516i 0.966741 + 0.255758i \(0.0823250\pi\)
−0.966741 + 0.255758i \(0.917675\pi\)
\(264\) 0 0
\(265\) −109.321 −0.412530
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 341.870 1.27089 0.635447 0.772144i \(-0.280816\pi\)
0.635447 + 0.772144i \(0.280816\pi\)
\(270\) 0 0
\(271\) 213.298i 0.787077i 0.919308 + 0.393538i \(0.128749\pi\)
−0.919308 + 0.393538i \(0.871251\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −24.1577 77.6440i −0.0878461 0.282342i
\(276\) 0 0
\(277\) 84.5789i 0.305339i 0.988277 + 0.152669i \(0.0487870\pi\)
−0.988277 + 0.152669i \(0.951213\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 351.148i 1.24964i 0.780771 + 0.624818i \(0.214827\pi\)
−0.780771 + 0.624818i \(0.785173\pi\)
\(282\) 0 0
\(283\) 285.943i 1.01040i 0.863002 + 0.505201i \(0.168581\pi\)
−0.863002 + 0.505201i \(0.831419\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −308.420 −1.07464
\(288\) 0 0
\(289\) 222.569 0.770136
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 393.927i 1.34446i −0.740342 0.672231i \(-0.765336\pi\)
0.740342 0.672231i \(-0.234664\pi\)
\(294\) 0 0
\(295\) 347.215 1.17700
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 243.435i 0.814165i
\(300\) 0 0
\(301\) 526.095 1.74782
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 316.452i 1.03755i
\(306\) 0 0
\(307\) 58.2239i 0.189654i −0.995494 0.0948272i \(-0.969770\pi\)
0.995494 0.0948272i \(-0.0302299\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 207.611 0.667561 0.333780 0.942651i \(-0.391676\pi\)
0.333780 + 0.942651i \(0.391676\pi\)
\(312\) 0 0
\(313\) −376.697 −1.20351 −0.601753 0.798682i \(-0.705531\pi\)
−0.601753 + 0.798682i \(0.705531\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −246.809 −0.778577 −0.389289 0.921116i \(-0.627279\pi\)
−0.389289 + 0.921116i \(0.627279\pi\)
\(318\) 0 0
\(319\) 72.3641 22.5149i 0.226847 0.0705797i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −247.923 −0.767564
\(324\) 0 0
\(325\) 56.8394i 0.174890i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 194.104i 0.589982i
\(330\) 0 0
\(331\) −146.431 −0.442389 −0.221195 0.975230i \(-0.570996\pi\)
−0.221195 + 0.975230i \(0.570996\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 142.669 0.425878
\(336\) 0 0
\(337\) 354.007i 1.05047i 0.850958 + 0.525233i \(0.176022\pi\)
−0.850958 + 0.525233i \(0.823978\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −167.244 537.529i −0.490450 1.57633i
\(342\) 0 0
\(343\) 364.342i 1.06222i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 529.807i 1.52682i −0.645913 0.763411i \(-0.723523\pi\)
0.645913 0.763411i \(-0.276477\pi\)
\(348\) 0 0
\(349\) 342.873i 0.982445i −0.871034 0.491223i \(-0.836550\pi\)
0.871034 0.491223i \(-0.163450\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −191.990 −0.543880 −0.271940 0.962314i \(-0.587665\pi\)
−0.271940 + 0.962314i \(0.587665\pi\)
\(354\) 0 0
\(355\) −305.195 −0.859704
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 601.654i 1.67592i −0.545735 0.837958i \(-0.683750\pi\)
0.545735 0.837958i \(-0.316250\pi\)
\(360\) 0 0
\(361\) −564.261 −1.56305
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 230.241i 0.630798i
\(366\) 0 0
\(367\) 139.415 0.379878 0.189939 0.981796i \(-0.439171\pi\)
0.189939 + 0.981796i \(0.439171\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 167.469i 0.451398i
\(372\) 0 0
\(373\) 303.629i 0.814019i −0.913424 0.407009i \(-0.866572\pi\)
0.913424 0.407009i \(-0.133428\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 52.9742 0.140515
\(378\) 0 0
\(379\) −690.046 −1.82070 −0.910351 0.413837i \(-0.864188\pi\)
−0.910351 + 0.413837i \(0.864188\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −53.2576 −0.139054 −0.0695269 0.997580i \(-0.522149\pi\)
−0.0695269 + 0.997580i \(0.522149\pi\)
\(384\) 0 0
\(385\) 283.310 88.1474i 0.735871 0.228954i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 587.027 1.50907 0.754533 0.656262i \(-0.227863\pi\)
0.754533 + 0.656262i \(0.227863\pi\)
\(390\) 0 0
\(391\) 258.047i 0.659967i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 102.083i 0.258439i
\(396\) 0 0
\(397\) 485.797 1.22367 0.611835 0.790985i \(-0.290431\pi\)
0.611835 + 0.790985i \(0.290431\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 166.469 0.415135 0.207568 0.978221i \(-0.433445\pi\)
0.207568 + 0.978221i \(0.433445\pi\)
\(402\) 0 0
\(403\) 393.499i 0.976424i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −63.6077 204.438i −0.156284 0.502306i
\(408\) 0 0
\(409\) 270.161i 0.660541i 0.943886 + 0.330271i \(0.107140\pi\)
−0.943886 + 0.330271i \(0.892860\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 531.901i 1.28790i
\(414\) 0 0
\(415\) 3.87319i 0.00933299i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −356.631 −0.851147 −0.425574 0.904924i \(-0.639928\pi\)
−0.425574 + 0.904924i \(0.639928\pi\)
\(420\) 0 0
\(421\) −462.238 −1.09795 −0.548977 0.835838i \(-0.684982\pi\)
−0.548977 + 0.835838i \(0.684982\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 60.2510i 0.141767i
\(426\) 0 0
\(427\) 484.774 1.13530
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 199.552i 0.462997i −0.972835 0.231498i \(-0.925637\pi\)
0.972835 0.231498i \(-0.0743628\pi\)
\(432\) 0 0
\(433\) −45.3693 −0.104779 −0.0523895 0.998627i \(-0.516684\pi\)
−0.0523895 + 0.998627i \(0.516684\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 963.045i 2.20376i
\(438\) 0 0
\(439\) 484.630i 1.10394i 0.833864 + 0.551970i \(0.186124\pi\)
−0.833864 + 0.551970i \(0.813876\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 375.538 0.847716 0.423858 0.905729i \(-0.360676\pi\)
0.423858 + 0.905729i \(0.360676\pi\)
\(444\) 0 0
\(445\) −188.084 −0.422662
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 385.636 0.858877 0.429439 0.903096i \(-0.358711\pi\)
0.429439 + 0.903096i \(0.358711\pi\)
\(450\) 0 0
\(451\) 503.951 156.796i 1.11741 0.347664i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 207.397 0.455819
\(456\) 0 0
\(457\) 378.368i 0.827939i 0.910291 + 0.413970i \(0.135858\pi\)
−0.910291 + 0.413970i \(0.864142\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 224.522i 0.487033i 0.969897 + 0.243516i \(0.0783010\pi\)
−0.969897 + 0.243516i \(0.921699\pi\)
\(462\) 0 0
\(463\) 52.3820 0.113136 0.0565680 0.998399i \(-0.481984\pi\)
0.0565680 + 0.998399i \(0.481984\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 513.387 1.09933 0.549665 0.835385i \(-0.314755\pi\)
0.549665 + 0.835385i \(0.314755\pi\)
\(468\) 0 0
\(469\) 218.556i 0.466003i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −859.626 + 267.459i −1.81739 + 0.565451i
\(474\) 0 0
\(475\) 224.860i 0.473389i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 238.730i 0.498392i 0.968453 + 0.249196i \(0.0801663\pi\)
−0.968453 + 0.249196i \(0.919834\pi\)
\(480\) 0 0
\(481\) 149.659i 0.311142i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −89.1845 −0.183885
\(486\) 0 0
\(487\) −593.251 −1.21817 −0.609087 0.793103i \(-0.708464\pi\)
−0.609087 + 0.793103i \(0.708464\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 858.935i 1.74936i 0.484703 + 0.874679i \(0.338928\pi\)
−0.484703 + 0.874679i \(0.661072\pi\)
\(492\) 0 0
\(493\) 56.1539 0.113902
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 467.529i 0.940702i
\(498\) 0 0
\(499\) 803.692 1.61061 0.805303 0.592864i \(-0.202003\pi\)
0.805303 + 0.592864i \(0.202003\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 752.302i 1.49563i −0.663907 0.747815i \(-0.731103\pi\)
0.663907 0.747815i \(-0.268897\pi\)
\(504\) 0 0
\(505\) 219.660i 0.434969i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 249.268 0.489721 0.244860 0.969558i \(-0.421258\pi\)
0.244860 + 0.969558i \(0.421258\pi\)
\(510\) 0 0
\(511\) 352.708 0.690230
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 19.9155 0.0386709
\(516\) 0 0
\(517\) 98.6795 + 317.161i 0.190869 + 0.613464i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −475.864 −0.913367 −0.456683 0.889629i \(-0.650963\pi\)
−0.456683 + 0.889629i \(0.650963\pi\)
\(522\) 0 0
\(523\) 362.833i 0.693754i −0.937911 0.346877i \(-0.887242\pi\)
0.937911 0.346877i \(-0.112758\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 417.118i 0.791495i
\(528\) 0 0
\(529\) 473.372 0.894843
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 368.918 0.692154
\(534\) 0 0
\(535\) 619.867i 1.15863i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 25.0962 + 80.6604i 0.0465606 + 0.149648i
\(540\) 0 0
\(541\) 830.667i 1.53543i −0.640792 0.767715i \(-0.721394\pi\)
0.640792 0.767715i \(-0.278606\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 14.9739i 0.0274750i
\(546\) 0 0
\(547\) 456.091i 0.833804i −0.908952 0.416902i \(-0.863116\pi\)
0.908952 0.416902i \(-0.136884\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 209.569 0.380343
\(552\) 0 0
\(553\) −156.382 −0.282788
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 338.810i 0.608277i 0.952628 + 0.304138i \(0.0983686\pi\)
−0.952628 + 0.304138i \(0.901631\pi\)
\(558\) 0 0
\(559\) −629.290 −1.12574
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 447.041i 0.794034i 0.917811 + 0.397017i \(0.129955\pi\)
−0.917811 + 0.397017i \(0.870045\pi\)
\(564\) 0 0
\(565\) 261.485 0.462805
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 522.893i 0.918969i 0.888186 + 0.459485i \(0.151966\pi\)
−0.888186 + 0.459485i \(0.848034\pi\)
\(570\) 0 0
\(571\) 904.574i 1.58419i −0.610396 0.792096i \(-0.708990\pi\)
0.610396 0.792096i \(-0.291010\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 234.042 0.407030
\(576\) 0 0
\(577\) 237.674 0.411914 0.205957 0.978561i \(-0.433969\pi\)
0.205957 + 0.978561i \(0.433969\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 5.93336 0.0102123
\(582\) 0 0
\(583\) −85.1384 273.639i −0.146035 0.469364i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −578.515 −0.985546 −0.492773 0.870158i \(-0.664017\pi\)
−0.492773 + 0.870158i \(0.664017\pi\)
\(588\) 0 0
\(589\) 1556.71i 2.64296i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 333.857i 0.562997i 0.959562 + 0.281499i \(0.0908314\pi\)
−0.959562 + 0.281499i \(0.909169\pi\)
\(594\) 0 0
\(595\) 219.846 0.369489
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −846.483 −1.41316 −0.706580 0.707633i \(-0.749763\pi\)
−0.706580 + 0.707633i \(0.749763\pi\)
\(600\) 0 0
\(601\) 455.011i 0.757089i −0.925583 0.378545i \(-0.876425\pi\)
0.925583 0.378545i \(-0.123575\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −418.109 + 288.061i −0.691089 + 0.476134i
\(606\) 0 0
\(607\) 726.557i 1.19696i 0.801137 + 0.598482i \(0.204229\pi\)
−0.801137 + 0.598482i \(0.795771\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 232.178i 0.379997i
\(612\) 0 0
\(613\) 574.532i 0.937247i −0.883398 0.468624i \(-0.844750\pi\)
0.883398 0.468624i \(-0.155250\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 278.946 0.452101 0.226050 0.974116i \(-0.427419\pi\)
0.226050 + 0.974116i \(0.427419\pi\)
\(618\) 0 0
\(619\) 593.061 0.958096 0.479048 0.877789i \(-0.340982\pi\)
0.479048 + 0.877789i \(0.340982\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 288.127i 0.462484i
\(624\) 0 0
\(625\) −385.546 −0.616874
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 158.642i 0.252214i
\(630\) 0 0
\(631\) 361.664 0.573160 0.286580 0.958056i \(-0.407482\pi\)
0.286580 + 0.958056i \(0.407482\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 117.576i 0.185159i
\(636\) 0 0
\(637\) 59.0475i 0.0926963i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −784.382 −1.22368 −0.611842 0.790980i \(-0.709571\pi\)
−0.611842 + 0.790980i \(0.709571\pi\)
\(642\) 0 0
\(643\) −362.764 −0.564174 −0.282087 0.959389i \(-0.591027\pi\)
−0.282087 + 0.959389i \(0.591027\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 921.727 1.42462 0.712308 0.701867i \(-0.247650\pi\)
0.712308 + 0.701867i \(0.247650\pi\)
\(648\) 0 0
\(649\) 270.410 + 869.112i 0.416657 + 1.33916i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −26.8653 −0.0411414 −0.0205707 0.999788i \(-0.506548\pi\)
−0.0205707 + 0.999788i \(0.506548\pi\)
\(654\) 0 0
\(655\) 474.938i 0.725096i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 320.820i 0.486828i 0.969922 + 0.243414i \(0.0782674\pi\)
−0.969922 + 0.243414i \(0.921733\pi\)
\(660\) 0 0
\(661\) 331.969 0.502222 0.251111 0.967958i \(-0.419204\pi\)
0.251111 + 0.967958i \(0.419204\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 820.477 1.23380
\(666\) 0 0
\(667\) 218.127i 0.327027i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −792.109 + 246.452i −1.18049 + 0.367290i
\(672\) 0 0
\(673\) 797.019i 1.18428i −0.805836 0.592139i \(-0.798284\pi\)
0.805836 0.592139i \(-0.201716\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 534.175i 0.789033i −0.918889 0.394516i \(-0.870912\pi\)
0.918889 0.394516i \(-0.129088\pi\)
\(678\) 0 0
\(679\) 136.622i 0.201211i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −843.097 −1.23440 −0.617201 0.786805i \(-0.711734\pi\)
−0.617201 + 0.786805i \(0.711734\pi\)
\(684\) 0 0
\(685\) 297.023 0.433610
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 200.318i 0.290737i
\(690\) 0 0
\(691\) 193.615 0.280196 0.140098 0.990138i \(-0.455258\pi\)
0.140098 + 0.990138i \(0.455258\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 547.592i 0.787903i
\(696\) 0 0
\(697\) 391.061 0.561064
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 448.863i 0.640318i −0.947364 0.320159i \(-0.896264\pi\)
0.947364 0.320159i \(-0.103736\pi\)
\(702\) 0 0
\(703\) 592.061i 0.842192i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 336.497 0.475951
\(708\) 0 0
\(709\) −311.031 −0.438689 −0.219345 0.975647i \(-0.570392\pi\)
−0.219345 + 0.975647i \(0.570392\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1620.27 2.27247
\(714\) 0 0
\(715\) −338.882 + 105.438i −0.473961 + 0.147465i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 486.014 0.675958 0.337979 0.941154i \(-0.390257\pi\)
0.337979 + 0.941154i \(0.390257\pi\)
\(720\) 0 0
\(721\) 30.5086i 0.0423143i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 50.9302i 0.0702485i
\(726\) 0 0
\(727\) −38.8616 −0.0534547 −0.0267273 0.999643i \(-0.508509\pi\)
−0.0267273 + 0.999643i \(0.508509\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −667.061 −0.912533
\(732\) 0 0
\(733\) 175.562i 0.239511i −0.992803 0.119756i \(-0.961789\pi\)
0.992803 0.119756i \(-0.0382111\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 111.110 + 357.114i 0.150760 + 0.484551i
\(738\) 0 0
\(739\) 494.527i 0.669184i −0.942363 0.334592i \(-0.891402\pi\)
0.942363 0.334592i \(-0.108598\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1150.84i 1.54892i −0.632625 0.774458i \(-0.718023\pi\)
0.632625 0.774458i \(-0.281977\pi\)
\(744\) 0 0
\(745\) 527.846i 0.708519i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −949.577 −1.26779
\(750\) 0 0
\(751\) −1343.73 −1.78926 −0.894628 0.446813i \(-0.852559\pi\)
−0.894628 + 0.446813i \(0.852559\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1154.94i 1.52972i
\(756\) 0 0
\(757\) 1034.58 1.36669 0.683343 0.730097i \(-0.260525\pi\)
0.683343 + 0.730097i \(0.260525\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 798.527i 1.04931i −0.851314 0.524656i \(-0.824194\pi\)
0.851314 0.524656i \(-0.175806\pi\)
\(762\) 0 0
\(763\) 22.9385 0.0300636
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 636.234i 0.829510i
\(768\) 0 0
\(769\) 261.311i 0.339806i 0.985461 + 0.169903i \(0.0543455\pi\)
−0.985461 + 0.169903i \(0.945655\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 327.734 0.423977 0.211989 0.977272i \(-0.432006\pi\)
0.211989 + 0.977272i \(0.432006\pi\)
\(774\) 0 0
\(775\) 378.315 0.488149
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1459.46 1.87351
\(780\) 0 0
\(781\) −237.685 763.931i −0.304334 0.978144i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1146.13 −1.46004
\(786\) 0 0
\(787\) 289.388i 0.367711i −0.982953 0.183855i \(-0.941142\pi\)
0.982953 0.183855i \(-0.0588578\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 400.570i 0.506409i
\(792\) 0 0
\(793\) −579.864 −0.731228
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −113.681 −0.142636 −0.0713180 0.997454i \(-0.522721\pi\)
−0.0713180 + 0.997454i \(0.522721\pi\)
\(798\) 0 0
\(799\) 246.114i 0.308028i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −576.315 + 179.311i −0.717703 + 0.223302i
\(804\) 0 0
\(805\) 853.982i 1.06085i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 854.163i 1.05583i −0.849299 0.527913i \(-0.822975\pi\)
0.849299 0.527913i \(-0.177025\pi\)
\(810\) 0 0
\(811\) 486.533i 0.599917i 0.953952 + 0.299959i \(0.0969729\pi\)
−0.953952 + 0.299959i \(0.903027\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −260.441 −0.319560
\(816\) 0 0
\(817\) −2489.51 −3.04713
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 527.104i 0.642027i 0.947075 + 0.321014i \(0.104024\pi\)
−0.947075 + 0.321014i \(0.895976\pi\)
\(822\) 0 0
\(823\) 314.805 0.382509 0.191255 0.981540i \(-0.438744\pi\)
0.191255 + 0.981540i \(0.438744\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 111.652i 0.135008i 0.997719 + 0.0675040i \(0.0215035\pi\)
−0.997719 + 0.0675040i \(0.978496\pi\)
\(828\) 0 0
\(829\) −695.395 −0.838836 −0.419418 0.907793i \(-0.637766\pi\)
−0.419418 + 0.907793i \(0.637766\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 62.5918i 0.0751402i
\(834\) 0 0
\(835\) 201.331i 0.241116i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −383.968 −0.457650 −0.228825 0.973468i \(-0.573488\pi\)
−0.228825 + 0.973468i \(0.573488\pi\)
\(840\) 0 0
\(841\) 793.533 0.943559
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 461.071 0.545646
\(846\) 0 0
\(847\) 441.282 + 640.503i 0.520994 + 0.756202i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 616.238 0.724134
\(852\) 0 0
\(853\) 570.527i 0.668847i 0.942423 + 0.334424i \(0.108542\pi\)
−0.942423 + 0.334424i \(0.891458\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 315.553i 0.368207i −0.982907 0.184103i \(-0.941062\pi\)
0.982907 0.184103i \(-0.0589382\pi\)
\(858\) 0 0
\(859\) 107.923 0.125638 0.0628190 0.998025i \(-0.479991\pi\)
0.0628190 + 0.998025i \(0.479991\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1431.55 1.65881 0.829403 0.558651i \(-0.188681\pi\)
0.829403 + 0.558651i \(0.188681\pi\)
\(864\) 0 0
\(865\) 600.121i 0.693782i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 255.524 79.5022i 0.294044 0.0914870i
\(870\) 0 0
\(871\) 261.426i 0.300144i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 873.727i 0.998546i
\(876\) 0 0
\(877\) 567.758i 0.647386i −0.946162 0.323693i \(-0.895075\pi\)
0.946162 0.323693i \(-0.104925\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −488.641 −0.554644 −0.277322 0.960777i \(-0.589447\pi\)
−0.277322 + 0.960777i \(0.589447\pi\)
\(882\) 0 0
\(883\) −840.144 −0.951465 −0.475732 0.879590i \(-0.657817\pi\)
−0.475732 + 0.879590i \(0.657817\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 981.439i 1.10647i −0.833025 0.553235i \(-0.813393\pi\)
0.833025 0.553235i \(-0.186607\pi\)
\(888\) 0 0
\(889\) 180.115 0.202605
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 918.510i 1.02857i
\(894\) 0 0
\(895\) 153.590 0.171609
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 352.589i 0.392202i
\(900\) 0 0
\(901\) 212.342i 0.235673i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −353.198 −0.390274
\(906\) 0 0
\(907\) −438.610 −0.483583 −0.241792 0.970328i \(-0.577735\pi\)
−0.241792 + 0.970328i \(0.577735\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −170.042 −0.186654 −0.0933272 0.995635i \(-0.529750\pi\)
−0.0933272 + 0.995635i \(0.529750\pi\)
\(912\) 0 0
\(913\) −9.69496 + 3.01643i −0.0106188 + 0.00330386i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 727.559 0.793412
\(918\) 0 0
\(919\) 1089.73i 1.18578i 0.805285 + 0.592888i \(0.202012\pi\)
−0.805285 + 0.592888i \(0.797988\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 559.236i 0.605890i
\(924\) 0 0
\(925\) 143.885 0.155551
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −769.446 −0.828252 −0.414126 0.910220i \(-0.635913\pi\)
−0.414126 + 0.910220i \(0.635913\pi\)
\(930\) 0 0
\(931\) 233.596i 0.250908i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −359.223 + 111.766i −0.384196 + 0.119536i
\(936\) 0 0
\(937\) 1606.78i 1.71481i 0.514641 + 0.857406i \(0.327925\pi\)
−0.514641 + 0.857406i \(0.672075\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1279.34i 1.35955i 0.733419 + 0.679777i \(0.237923\pi\)
−0.733419 + 0.679777i \(0.762077\pi\)
\(942\) 0 0
\(943\) 1519.06i 1.61088i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −985.800 −1.04097 −0.520486 0.853870i \(-0.674249\pi\)
−0.520486 + 0.853870i \(0.674249\pi\)
\(948\) 0 0
\(949\) −421.892 −0.444565
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 761.038i 0.798571i −0.916827 0.399285i \(-0.869258\pi\)
0.916827 0.399285i \(-0.130742\pi\)
\(954\) 0 0
\(955\) 185.615 0.194362
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 455.011i 0.474464i
\(960\) 0 0
\(961\) 1658.08 1.72537
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 571.211i 0.591929i
\(966\) 0 0
\(967\) 702.938i 0.726926i −0.931609 0.363463i \(-0.881594\pi\)
0.931609 0.363463i \(-0.118406\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1289.42 −1.32793 −0.663963 0.747766i \(-0.731127\pi\)
−0.663963 + 0.747766i \(0.731127\pi\)
\(972\) 0 0
\(973\) 838.859 0.862136
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 690.526 0.706782 0.353391 0.935476i \(-0.385029\pi\)
0.353391 + 0.935476i \(0.385029\pi\)
\(978\) 0 0
\(979\) −146.480 470.793i −0.149622 0.480892i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1080.40 1.09908 0.549540 0.835467i \(-0.314803\pi\)
0.549540 + 0.835467i \(0.314803\pi\)
\(984\) 0 0
\(985\) 25.0367i 0.0254180i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2591.17i 2.61999i
\(990\) 0 0
\(991\) 686.561 0.692796 0.346398 0.938088i \(-0.387405\pi\)
0.346398 + 0.938088i \(0.387405\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 982.136 0.987071
\(996\) 0 0
\(997\) 1413.50i 1.41775i 0.705333 + 0.708876i \(0.250797\pi\)
−0.705333 + 0.708876i \(0.749203\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1584.3.j.f.1297.3 4
3.2 odd 2 528.3.j.c.241.1 4
4.3 odd 2 99.3.c.b.10.3 4
11.10 odd 2 inner 1584.3.j.f.1297.4 4
12.11 even 2 33.3.c.a.10.2 4
24.5 odd 2 2112.3.j.d.769.3 4
24.11 even 2 2112.3.j.a.769.2 4
33.32 even 2 528.3.j.c.241.2 4
44.43 even 2 99.3.c.b.10.2 4
60.23 odd 4 825.3.h.a.274.4 8
60.47 odd 4 825.3.h.a.274.5 8
60.59 even 2 825.3.b.a.76.3 4
132.35 odd 10 363.3.g.e.40.3 16
132.47 even 10 363.3.g.e.112.2 16
132.59 even 10 363.3.g.e.94.3 16
132.71 even 10 363.3.g.e.118.3 16
132.83 odd 10 363.3.g.e.118.2 16
132.95 odd 10 363.3.g.e.94.2 16
132.107 odd 10 363.3.g.e.112.3 16
132.119 even 10 363.3.g.e.40.2 16
132.131 odd 2 33.3.c.a.10.3 yes 4
264.131 odd 2 2112.3.j.a.769.1 4
264.197 even 2 2112.3.j.d.769.4 4
660.263 even 4 825.3.h.a.274.6 8
660.527 even 4 825.3.h.a.274.3 8
660.659 odd 2 825.3.b.a.76.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.3.c.a.10.2 4 12.11 even 2
33.3.c.a.10.3 yes 4 132.131 odd 2
99.3.c.b.10.2 4 44.43 even 2
99.3.c.b.10.3 4 4.3 odd 2
363.3.g.e.40.2 16 132.119 even 10
363.3.g.e.40.3 16 132.35 odd 10
363.3.g.e.94.2 16 132.95 odd 10
363.3.g.e.94.3 16 132.59 even 10
363.3.g.e.112.2 16 132.47 even 10
363.3.g.e.112.3 16 132.107 odd 10
363.3.g.e.118.2 16 132.83 odd 10
363.3.g.e.118.3 16 132.71 even 10
528.3.j.c.241.1 4 3.2 odd 2
528.3.j.c.241.2 4 33.32 even 2
825.3.b.a.76.2 4 660.659 odd 2
825.3.b.a.76.3 4 60.59 even 2
825.3.h.a.274.3 8 660.527 even 4
825.3.h.a.274.4 8 60.23 odd 4
825.3.h.a.274.5 8 60.47 odd 4
825.3.h.a.274.6 8 660.263 even 4
1584.3.j.f.1297.3 4 1.1 even 1 trivial
1584.3.j.f.1297.4 4 11.10 odd 2 inner
2112.3.j.a.769.1 4 264.131 odd 2
2112.3.j.a.769.2 4 24.11 even 2
2112.3.j.d.769.3 4 24.5 odd 2
2112.3.j.d.769.4 4 264.197 even 2