L(s) = 1 | + 4.97i·2-s − 3i·3-s − 16.7·4-s + 14.9·6-s + 5.48i·7-s − 43.3i·8-s − 9·9-s + 11·11-s + 50.1i·12-s − 24.5i·13-s − 27.2·14-s + 81.6·16-s − 59.3i·17-s − 44.7i·18-s − 5.89·19-s + ⋯ |
L(s) = 1 | + 1.75i·2-s − 0.577i·3-s − 2.08·4-s + 1.01·6-s + 0.296i·7-s − 1.91i·8-s − 0.333·9-s + 0.301·11-s + 1.20i·12-s − 0.524i·13-s − 0.520·14-s + 1.27·16-s − 0.847i·17-s − 0.585i·18-s − 0.0711·19-s + ⋯ |
Λ(s)=(=(825s/2ΓC(s)L(s)(−0.894−0.447i)Λ(4−s)
Λ(s)=(=(825s/2ΓC(s+3/2)L(s)(−0.894−0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
825
= 3⋅52⋅11
|
Sign: |
−0.894−0.447i
|
Analytic conductor: |
48.6765 |
Root analytic conductor: |
6.97686 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ825(199,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 825, ( :3/2), −0.894−0.447i)
|
Particular Values
L(2) |
≈ |
1.433340734 |
L(21) |
≈ |
1.433340734 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+3iT |
| 5 | 1 |
| 11 | 1−11T |
good | 2 | 1−4.97iT−8T2 |
| 7 | 1−5.48iT−343T2 |
| 13 | 1+24.5iT−2.19e3T2 |
| 17 | 1+59.3iT−4.91e3T2 |
| 19 | 1+5.89T+6.85e3T2 |
| 23 | 1−68.4iT−1.21e4T2 |
| 29 | 1−265.T+2.43e4T2 |
| 31 | 1+196.T+2.97e4T2 |
| 37 | 1−166.iT−5.06e4T2 |
| 41 | 1−424.T+6.89e4T2 |
| 43 | 1−177.iT−7.95e4T2 |
| 47 | 1−141.iT−1.03e5T2 |
| 53 | 1−339.iT−1.48e5T2 |
| 59 | 1+416.T+2.05e5T2 |
| 61 | 1−662.T+2.26e5T2 |
| 67 | 1−313.iT−3.00e5T2 |
| 71 | 1+153.T+3.57e5T2 |
| 73 | 1+153.iT−3.89e5T2 |
| 79 | 1+403.T+4.93e5T2 |
| 83 | 1−652.iT−5.71e5T2 |
| 89 | 1+1.22e3T+7.04e5T2 |
| 97 | 1−959.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.735129307905865494755214278691, −9.014223582511925788466147782831, −8.222442823441254634169944053694, −7.50491342153128530059579954211, −6.81363901096238439245231268137, −5.97123731429077855535952746905, −5.28277252274552073245733820714, −4.26486558659487439820287666440, −2.78316261502009388736625661354, −0.931091076678150464713588190043,
0.49894755797449731922978876321, 1.77105345417228666139525434763, 2.83073795781045484529770970591, 3.94242892453941661332561963177, 4.37429123430493752225928330783, 5.57489993554492383010913253612, 6.85178230249117176547417292095, 8.288514750313401562848550273326, 8.995741904051576072763499012853, 9.719403420406324237010382383421