L(s) = 1 | + 4.97i·2-s − 3i·3-s − 16.7·4-s + 14.9·6-s + 5.48i·7-s − 43.3i·8-s − 9·9-s + 11·11-s + 50.1i·12-s − 24.5i·13-s − 27.2·14-s + 81.6·16-s − 59.3i·17-s − 44.7i·18-s − 5.89·19-s + ⋯ |
L(s) = 1 | + 1.75i·2-s − 0.577i·3-s − 2.08·4-s + 1.01·6-s + 0.296i·7-s − 1.91i·8-s − 0.333·9-s + 0.301·11-s + 1.20i·12-s − 0.524i·13-s − 0.520·14-s + 1.27·16-s − 0.847i·17-s − 0.585i·18-s − 0.0711·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.433340734\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.433340734\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + 3iT \) |
| 5 | \( 1 \) |
| 11 | \( 1 - 11T \) |
good | 2 | \( 1 - 4.97iT - 8T^{2} \) |
| 7 | \( 1 - 5.48iT - 343T^{2} \) |
| 13 | \( 1 + 24.5iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 59.3iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 5.89T + 6.85e3T^{2} \) |
| 23 | \( 1 - 68.4iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 265.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 196.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 166. iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 424.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 177. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 141. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 339. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 416.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 662.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 313. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 153.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 153. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 403.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 652. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 1.22e3T + 7.04e5T^{2} \) |
| 97 | \( 1 - 959. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.735129307905865494755214278691, −9.014223582511925788466147782831, −8.222442823441254634169944053694, −7.50491342153128530059579954211, −6.81363901096238439245231268137, −5.97123731429077855535952746905, −5.28277252274552073245733820714, −4.26486558659487439820287666440, −2.78316261502009388736625661354, −0.931091076678150464713588190043,
0.49894755797449731922978876321, 1.77105345417228666139525434763, 2.83073795781045484529770970591, 3.94242892453941661332561963177, 4.37429123430493752225928330783, 5.57489993554492383010913253612, 6.85178230249117176547417292095, 8.288514750313401562848550273326, 8.995741904051576072763499012853, 9.719403420406324237010382383421