Properties

Label 825.4.c.k
Level $825$
Weight $4$
Character orbit 825.c
Analytic conductor $48.677$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [825,4,Mod(199,825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(825, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("825.199");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 825.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(48.6765757547\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.36142572544.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 53x^{4} + 632x^{2} + 484 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 165)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{3} + \beta_1) q^{2} + 3 \beta_{3} q^{3} + (\beta_{4} - 10) q^{4} + (3 \beta_{2} - 3) q^{6} + ( - 2 \beta_{5} - 4 \beta_{3} - 2 \beta_1) q^{7} + ( - 2 \beta_{5} + 3 \beta_{3} - 9 \beta_1) q^{8}+ \cdots - 99 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 60 q^{4} - 12 q^{6} - 54 q^{9} + 66 q^{11} + 136 q^{14} + 356 q^{16} + 116 q^{19} + 60 q^{21} - 108 q^{24} - 240 q^{26} + 440 q^{29} + 496 q^{31} + 160 q^{34} + 540 q^{36} - 684 q^{39} + 312 q^{41}+ \cdots - 594 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 53x^{4} + 632x^{2} + 484 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{4} + 27\nu^{2} - 22 ) / 48 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{5} + 75\nu^{3} + 1226\nu ) / 1056 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} + 51\nu^{2} + 386 ) / 24 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -13\nu^{5} - 623\nu^{3} - 6082\nu ) / 352 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{4} - 2\beta_{2} - 17 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} + 39\beta_{3} - 28\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -27\beta_{4} + 102\beta_{2} + 481 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -75\beta_{5} - 1869\beta_{3} + 874\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/825\mathbb{Z}\right)^\times\).

\(n\) \(376\) \(551\) \(727\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
199.1
4.06484i
5.97123i
0.906392i
0.906392i
5.97123i
4.06484i
5.06484i 3.00000i −17.6526 0 −15.1945 27.4348i 48.8887i −9.00000 0
199.2 4.97123i 3.00000i −16.7131 0 14.9137 5.48376i 43.3148i −9.00000 0
199.3 1.90639i 3.00000i 4.36567 0 −5.71918 22.9186i 23.5738i −9.00000 0
199.4 1.90639i 3.00000i 4.36567 0 −5.71918 22.9186i 23.5738i −9.00000 0
199.5 4.97123i 3.00000i −16.7131 0 14.9137 5.48376i 43.3148i −9.00000 0
199.6 5.06484i 3.00000i −17.6526 0 −15.1945 27.4348i 48.8887i −9.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 199.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 825.4.c.k 6
5.b even 2 1 inner 825.4.c.k 6
5.c odd 4 1 165.4.a.e 3
5.c odd 4 1 825.4.a.r 3
15.e even 4 1 495.4.a.k 3
15.e even 4 1 2475.4.a.t 3
55.e even 4 1 1815.4.a.r 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
165.4.a.e 3 5.c odd 4 1
495.4.a.k 3 15.e even 4 1
825.4.a.r 3 5.c odd 4 1
825.4.c.k 6 1.a even 1 1 trivial
825.4.c.k 6 5.b even 2 1 inner
1815.4.a.r 3 55.e even 4 1
2475.4.a.t 3 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(825, [\chi])\):

\( T_{2}^{6} + 54T_{2}^{4} + 817T_{2}^{2} + 2304 \) Copy content Toggle raw display
\( T_{7}^{6} + 1308T_{7}^{4} + 433776T_{7}^{2} + 11888704 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 54 T^{4} + \cdots + 2304 \) Copy content Toggle raw display
$3$ \( (T^{2} + 9)^{3} \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + 1308 T^{4} + \cdots + 11888704 \) Copy content Toggle raw display
$11$ \( (T - 11)^{6} \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots + 1385030656 \) Copy content Toggle raw display
$17$ \( T^{6} + 5232 T^{4} + \cdots + 71368704 \) Copy content Toggle raw display
$19$ \( (T^{3} - 58 T^{2} + \cdots - 65520)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 21970354176 \) Copy content Toggle raw display
$29$ \( (T^{3} - 220 T^{2} + \cdots + 629760)^{2} \) Copy content Toggle raw display
$31$ \( (T^{3} - 248 T^{2} + \cdots + 9589248)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 346232953016896 \) Copy content Toggle raw display
$41$ \( (T^{3} - 156 T^{2} + \cdots - 3013632)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 2089181160000 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 19116342706176 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 13353645381696 \) Copy content Toggle raw display
$59$ \( (T^{3} + 548 T^{2} + \cdots + 1206720)^{2} \) Copy content Toggle raw display
$61$ \( (T^{3} - 414 T^{2} + \cdots + 342344792)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 66187206344704 \) Copy content Toggle raw display
$71$ \( (T^{3} + 912 T^{2} + \cdots - 2867712)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 700057090622464 \) Copy content Toggle raw display
$79$ \( (T^{3} - 542 T^{2} + \cdots + 88503440)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 18\!\cdots\!04 \) Copy content Toggle raw display
$89$ \( (T^{3} + 790 T^{2} + \cdots - 1941629400)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 96\!\cdots\!96 \) Copy content Toggle raw display
show more
show less