L(s) = 1 | − 2.33·2-s + 2.30·3-s + 3.43·4-s + 3.37·5-s − 5.38·6-s − 3.34·8-s + 2.33·9-s − 7.85·10-s + 2.33·11-s + 7.93·12-s + 7.78·15-s + 0.933·16-s − 5.45·17-s − 5.43·18-s − 7.16·19-s + 11.5·20-s − 5.43·22-s − 6.45·23-s − 7.73·24-s + 6.36·25-s − 1.54·27-s − 8.44·29-s − 18.1·30-s − 3.05·31-s + 4.51·32-s + 5.38·33-s + 12.7·34-s + ⋯ |
L(s) = 1 | − 1.64·2-s + 1.33·3-s + 1.71·4-s + 1.50·5-s − 2.19·6-s − 1.18·8-s + 0.777·9-s − 2.48·10-s + 0.702·11-s + 2.29·12-s + 2.00·15-s + 0.233·16-s − 1.32·17-s − 1.28·18-s − 1.64·19-s + 2.59·20-s − 1.15·22-s − 1.34·23-s − 1.57·24-s + 1.27·25-s − 0.297·27-s − 1.56·29-s − 3.31·30-s − 0.548·31-s + 0.798·32-s + 0.937·33-s + 2.18·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + 2.33T + 2T^{2} \) |
| 3 | \( 1 - 2.30T + 3T^{2} \) |
| 5 | \( 1 - 3.37T + 5T^{2} \) |
| 11 | \( 1 - 2.33T + 11T^{2} \) |
| 17 | \( 1 + 5.45T + 17T^{2} \) |
| 19 | \( 1 + 7.16T + 19T^{2} \) |
| 23 | \( 1 + 6.45T + 23T^{2} \) |
| 29 | \( 1 + 8.44T + 29T^{2} \) |
| 31 | \( 1 + 3.05T + 31T^{2} \) |
| 37 | \( 1 - 3.05T + 37T^{2} \) |
| 41 | \( 1 + 0.937T + 41T^{2} \) |
| 43 | \( 1 + 4.09T + 43T^{2} \) |
| 47 | \( 1 + 3.46T + 47T^{2} \) |
| 53 | \( 1 + 2.34T + 53T^{2} \) |
| 59 | \( 1 - 7.24T + 59T^{2} \) |
| 61 | \( 1 - 6.39T + 61T^{2} \) |
| 67 | \( 1 - 4.61T + 67T^{2} \) |
| 71 | \( 1 + 7.58T + 71T^{2} \) |
| 73 | \( 1 + 2.06T + 73T^{2} \) |
| 79 | \( 1 + 7.58T + 79T^{2} \) |
| 83 | \( 1 + 2.89T + 83T^{2} \) |
| 89 | \( 1 - 13.1T + 89T^{2} \) |
| 97 | \( 1 + 3.55T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.75461809515247561969053022719, −6.94009026845971871152635577076, −6.38798418714776980244238961747, −5.77573379411836525912457531341, −4.46593485748908533932766715553, −3.65311425195365555564267740337, −2.40045960394371959364580152623, −2.08120445065263952018945724395, −1.60354746429304010226338129061, 0,
1.60354746429304010226338129061, 2.08120445065263952018945724395, 2.40045960394371959364580152623, 3.65311425195365555564267740337, 4.46593485748908533932766715553, 5.77573379411836525912457531341, 6.38798418714776980244238961747, 6.94009026845971871152635577076, 7.75461809515247561969053022719