Properties

Label 2-91e2-1.1-c1-0-455
Degree $2$
Conductor $8281$
Sign $-1$
Analytic cond. $66.1241$
Root an. cond. $8.13167$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.33·2-s + 2.30·3-s + 3.43·4-s + 3.37·5-s − 5.38·6-s − 3.34·8-s + 2.33·9-s − 7.85·10-s + 2.33·11-s + 7.93·12-s + 7.78·15-s + 0.933·16-s − 5.45·17-s − 5.43·18-s − 7.16·19-s + 11.5·20-s − 5.43·22-s − 6.45·23-s − 7.73·24-s + 6.36·25-s − 1.54·27-s − 8.44·29-s − 18.1·30-s − 3.05·31-s + 4.51·32-s + 5.38·33-s + 12.7·34-s + ⋯
L(s)  = 1  − 1.64·2-s + 1.33·3-s + 1.71·4-s + 1.50·5-s − 2.19·6-s − 1.18·8-s + 0.777·9-s − 2.48·10-s + 0.702·11-s + 2.29·12-s + 2.00·15-s + 0.233·16-s − 1.32·17-s − 1.28·18-s − 1.64·19-s + 2.59·20-s − 1.15·22-s − 1.34·23-s − 1.57·24-s + 1.27·25-s − 0.297·27-s − 1.56·29-s − 3.31·30-s − 0.548·31-s + 0.798·32-s + 0.937·33-s + 2.18·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8281\)    =    \(7^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(66.1241\)
Root analytic conductor: \(8.13167\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8281,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
13 \( 1 \)
good2 \( 1 + 2.33T + 2T^{2} \)
3 \( 1 - 2.30T + 3T^{2} \)
5 \( 1 - 3.37T + 5T^{2} \)
11 \( 1 - 2.33T + 11T^{2} \)
17 \( 1 + 5.45T + 17T^{2} \)
19 \( 1 + 7.16T + 19T^{2} \)
23 \( 1 + 6.45T + 23T^{2} \)
29 \( 1 + 8.44T + 29T^{2} \)
31 \( 1 + 3.05T + 31T^{2} \)
37 \( 1 - 3.05T + 37T^{2} \)
41 \( 1 + 0.937T + 41T^{2} \)
43 \( 1 + 4.09T + 43T^{2} \)
47 \( 1 + 3.46T + 47T^{2} \)
53 \( 1 + 2.34T + 53T^{2} \)
59 \( 1 - 7.24T + 59T^{2} \)
61 \( 1 - 6.39T + 61T^{2} \)
67 \( 1 - 4.61T + 67T^{2} \)
71 \( 1 + 7.58T + 71T^{2} \)
73 \( 1 + 2.06T + 73T^{2} \)
79 \( 1 + 7.58T + 79T^{2} \)
83 \( 1 + 2.89T + 83T^{2} \)
89 \( 1 - 13.1T + 89T^{2} \)
97 \( 1 + 3.55T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.75461809515247561969053022719, −6.94009026845971871152635577076, −6.38798418714776980244238961747, −5.77573379411836525912457531341, −4.46593485748908533932766715553, −3.65311425195365555564267740337, −2.40045960394371959364580152623, −2.08120445065263952018945724395, −1.60354746429304010226338129061, 0, 1.60354746429304010226338129061, 2.08120445065263952018945724395, 2.40045960394371959364580152623, 3.65311425195365555564267740337, 4.46593485748908533932766715553, 5.77573379411836525912457531341, 6.38798418714776980244238961747, 6.94009026845971871152635577076, 7.75461809515247561969053022719

Graph of the $Z$-function along the critical line