Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [8281,2,Mod(1,8281)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8281, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("8281.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 8281.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 8.8.8446345216.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 637) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−2.33152 | −2.30901 | 3.43596 | −3.37112 | 5.38349 | 0 | −3.34797 | 2.33152 | 7.85981 | ||||||||||||||||||||||||||||||||||||||||||
1.2 | −2.33152 | 2.30901 | 3.43596 | 3.37112 | −5.38349 | 0 | −3.34797 | 2.33152 | −7.85981 | |||||||||||||||||||||||||||||||||||||||||||
1.3 | −1.52077 | −2.12621 | 0.312752 | 0.589391 | 3.23349 | 0 | 2.56592 | 1.52077 | −0.896331 | |||||||||||||||||||||||||||||||||||||||||||
1.4 | −1.52077 | 2.12621 | 0.312752 | −0.589391 | −3.23349 | 0 | 2.56592 | 1.52077 | 0.896331 | |||||||||||||||||||||||||||||||||||||||||||
1.5 | −0.579810 | −1.89204 | −1.66382 | 1.47362 | 1.09702 | 0 | 2.12432 | 0.579810 | −0.854419 | |||||||||||||||||||||||||||||||||||||||||||
1.6 | −0.579810 | 1.89204 | −1.66382 | −1.47362 | −1.09702 | 0 | 2.12432 | 0.579810 | 0.854419 | |||||||||||||||||||||||||||||||||||||||||||
1.7 | 2.43210 | −0.753592 | 3.91511 | −0.341537 | −1.83281 | 0 | 4.65773 | −2.43210 | −0.830652 | |||||||||||||||||||||||||||||||||||||||||||
1.8 | 2.43210 | 0.753592 | 3.91511 | 0.341537 | 1.83281 | 0 | 4.65773 | −2.43210 | 0.830652 | |||||||||||||||||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 8281.2.a.ci | 8 | |
7.b | odd | 2 | 1 | inner | 8281.2.a.ci | 8 | |
13.b | even | 2 | 1 | 8281.2.a.cl | 8 | ||
13.c | even | 3 | 2 | 637.2.f.l | ✓ | 16 | |
91.b | odd | 2 | 1 | 8281.2.a.cl | 8 | ||
91.g | even | 3 | 2 | 637.2.g.m | 16 | ||
91.h | even | 3 | 2 | 637.2.h.m | 16 | ||
91.m | odd | 6 | 2 | 637.2.g.m | 16 | ||
91.n | odd | 6 | 2 | 637.2.f.l | ✓ | 16 | |
91.v | odd | 6 | 2 | 637.2.h.m | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
637.2.f.l | ✓ | 16 | 13.c | even | 3 | 2 | |
637.2.f.l | ✓ | 16 | 91.n | odd | 6 | 2 | |
637.2.g.m | 16 | 91.g | even | 3 | 2 | ||
637.2.g.m | 16 | 91.m | odd | 6 | 2 | ||
637.2.h.m | 16 | 91.h | even | 3 | 2 | ||
637.2.h.m | 16 | 91.v | odd | 6 | 2 | ||
8281.2.a.ci | 8 | 1.a | even | 1 | 1 | trivial | |
8281.2.a.ci | 8 | 7.b | odd | 2 | 1 | inner | |
8281.2.a.cl | 8 | 13.b | even | 2 | 1 | ||
8281.2.a.cl | 8 | 91.b | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|
|
|