Properties

Label 8281.2.a.ci
Level 82818281
Weight 22
Character orbit 8281.a
Self dual yes
Analytic conductor 66.12466.124
Analytic rank 11
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8281,2,Mod(1,8281)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8281, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8281.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 8281=72132 8281 = 7^{2} \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 8281.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 66.124117913866.1241179138
Analytic rank: 11
Dimension: 88
Coefficient field: 8.8.8446345216.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x88x6+19x414x2+1 x^{8} - 8x^{6} + 19x^{4} - 14x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 637)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β51)q2+(β4β1)q3+(β6β5β2+1)q4+(β7+β3)q5+(β4β3+2β1)q6+(β6β5+1)q8++(β6β5β2+3)q99+O(q100) q + ( - \beta_{5} - 1) q^{2} + ( - \beta_{4} - \beta_1) q^{3} + ( - \beta_{6} - \beta_{5} - \beta_{2} + 1) q^{4} + ( - \beta_{7} + \beta_{3}) q^{5} + (\beta_{4} - \beta_{3} + 2 \beta_1) q^{6} + (\beta_{6} - \beta_{5} + 1) q^{8}+ \cdots + ( - \beta_{6} - \beta_{5} - \beta_{2} + 3) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q4q2+12q4+12q8+4q9+4q11+8q15+4q1628q1828q2212q2312q258q2928q304q36+8q3732q434q44+4q46++28q99+O(q100) 8 q - 4 q^{2} + 12 q^{4} + 12 q^{8} + 4 q^{9} + 4 q^{11} + 8 q^{15} + 4 q^{16} - 28 q^{18} - 28 q^{22} - 12 q^{23} - 12 q^{25} - 8 q^{29} - 28 q^{30} - 4 q^{36} + 8 q^{37} - 32 q^{43} - 4 q^{44} + 4 q^{46}+ \cdots + 28 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x88x6+19x414x2+1 x^{8} - 8x^{6} + 19x^{4} - 14x^{2} + 1 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν22 \nu^{2} - 2 Copy content Toggle raw display
β3\beta_{3}== ν33ν \nu^{3} - 3\nu Copy content Toggle raw display
β4\beta_{4}== ν56ν3+7ν \nu^{5} - 6\nu^{3} + 7\nu Copy content Toggle raw display
β5\beta_{5}== ν66ν4+7ν2 \nu^{6} - 6\nu^{4} + 7\nu^{2} Copy content Toggle raw display
β6\beta_{6}== ν6+7ν412ν2+3 -\nu^{6} + 7\nu^{4} - 12\nu^{2} + 3 Copy content Toggle raw display
β7\beta_{7}== ν77ν5+13ν36ν \nu^{7} - 7\nu^{5} + 13\nu^{3} - 6\nu Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+2 \beta_{2} + 2 Copy content Toggle raw display
ν3\nu^{3}== β3+3β1 \beta_{3} + 3\beta_1 Copy content Toggle raw display
ν4\nu^{4}== β6+β5+5β2+7 \beta_{6} + \beta_{5} + 5\beta_{2} + 7 Copy content Toggle raw display
ν5\nu^{5}== β4+6β3+11β1 \beta_{4} + 6\beta_{3} + 11\beta_1 Copy content Toggle raw display
ν6\nu^{6}== 6β6+7β5+23β2+28 6\beta_{6} + 7\beta_{5} + 23\beta_{2} + 28 Copy content Toggle raw display
ν7\nu^{7}== β7+7β4+29β3+44β1 \beta_{7} + 7\beta_{4} + 29\beta_{3} + 44\beta_1 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
1.11758
−1.11758
0.282452
−0.282452
2.09282
−2.09282
−1.51373
1.51373
−2.33152 −2.30901 3.43596 −3.37112 5.38349 0 −3.34797 2.33152 7.85981
1.2 −2.33152 2.30901 3.43596 3.37112 −5.38349 0 −3.34797 2.33152 −7.85981
1.3 −1.52077 −2.12621 0.312752 0.589391 3.23349 0 2.56592 1.52077 −0.896331
1.4 −1.52077 2.12621 0.312752 −0.589391 −3.23349 0 2.56592 1.52077 0.896331
1.5 −0.579810 −1.89204 −1.66382 1.47362 1.09702 0 2.12432 0.579810 −0.854419
1.6 −0.579810 1.89204 −1.66382 −1.47362 −1.09702 0 2.12432 0.579810 0.854419
1.7 2.43210 −0.753592 3.91511 −0.341537 −1.83281 0 4.65773 −2.43210 −0.830652
1.8 2.43210 0.753592 3.91511 0.341537 1.83281 0 4.65773 −2.43210 0.830652
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
77 +1 +1
1313 +1 +1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8281.2.a.ci 8
7.b odd 2 1 inner 8281.2.a.ci 8
13.b even 2 1 8281.2.a.cl 8
13.c even 3 2 637.2.f.l 16
91.b odd 2 1 8281.2.a.cl 8
91.g even 3 2 637.2.g.m 16
91.h even 3 2 637.2.h.m 16
91.m odd 6 2 637.2.g.m 16
91.n odd 6 2 637.2.f.l 16
91.v odd 6 2 637.2.h.m 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
637.2.f.l 16 13.c even 3 2
637.2.f.l 16 91.n odd 6 2
637.2.g.m 16 91.g even 3 2
637.2.g.m 16 91.m odd 6 2
637.2.h.m 16 91.h even 3 2
637.2.h.m 16 91.v odd 6 2
8281.2.a.ci 8 1.a even 1 1 trivial
8281.2.a.ci 8 7.b odd 2 1 inner
8281.2.a.cl 8 13.b even 2 1
8281.2.a.cl 8 91.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(8281))S_{2}^{\mathrm{new}}(\Gamma_0(8281)):

T24+2T235T2212T25 T_{2}^{4} + 2T_{2}^{3} - 5T_{2}^{2} - 12T_{2} - 5 Copy content Toggle raw display
T3814T36+67T34120T32+49 T_{3}^{8} - 14T_{3}^{6} + 67T_{3}^{4} - 120T_{3}^{2} + 49 Copy content Toggle raw display
T5814T56+31T5412T52+1 T_{5}^{8} - 14T_{5}^{6} + 31T_{5}^{4} - 12T_{5}^{2} + 1 Copy content Toggle raw display
T1142T1135T112+12T115 T_{11}^{4} - 2T_{11}^{3} - 5T_{11}^{2} + 12T_{11} - 5 Copy content Toggle raw display
T17858T176+966T1743866T172+3721 T_{17}^{8} - 58T_{17}^{6} + 966T_{17}^{4} - 3866T_{17}^{2} + 3721 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T4+2T35T2+5)2 (T^{4} + 2 T^{3} - 5 T^{2} + \cdots - 5)^{2} Copy content Toggle raw display
33 T814T6++49 T^{8} - 14 T^{6} + \cdots + 49 Copy content Toggle raw display
55 T814T6++1 T^{8} - 14 T^{6} + \cdots + 1 Copy content Toggle raw display
77 T8 T^{8} Copy content Toggle raw display
1111 (T42T35T2+5)2 (T^{4} - 2 T^{3} - 5 T^{2} + \cdots - 5)^{2} Copy content Toggle raw display
1313 T8 T^{8} Copy content Toggle raw display
1717 T858T6++3721 T^{8} - 58 T^{6} + \cdots + 3721 Copy content Toggle raw display
1919 T894T6++1225 T^{8} - 94 T^{6} + \cdots + 1225 Copy content Toggle raw display
2323 (T4+6T3++100)2 (T^{4} + 6 T^{3} + \cdots + 100)^{2} Copy content Toggle raw display
2929 (T4+4T3++1781)2 (T^{4} + 4 T^{3} + \cdots + 1781)^{2} Copy content Toggle raw display
3131 T870T6++26569 T^{8} - 70 T^{6} + \cdots + 26569 Copy content Toggle raw display
3737 (T44T3+380)2 (T^{4} - 4 T^{3} + \cdots - 380)^{2} Copy content Toggle raw display
4141 T8176T6++4096 T^{8} - 176 T^{6} + \cdots + 4096 Copy content Toggle raw display
4343 (T4+16T3+3205)2 (T^{4} + 16 T^{3} + \cdots - 3205)^{2} Copy content Toggle raw display
4747 T8226T6++27889 T^{8} - 226 T^{6} + \cdots + 27889 Copy content Toggle raw display
5353 (T4+2T3++271)2 (T^{4} + 2 T^{3} + \cdots + 271)^{2} Copy content Toggle raw display
5959 T8194T6++169 T^{8} - 194 T^{6} + \cdots + 169 Copy content Toggle raw display
6161 T8108T6++19600 T^{8} - 108 T^{6} + \cdots + 19600 Copy content Toggle raw display
6767 (T4+10T3+283)2 (T^{4} + 10 T^{3} + \cdots - 283)^{2} Copy content Toggle raw display
7171 (T4+4T3++5956)2 (T^{4} + 4 T^{3} + \cdots + 5956)^{2} Copy content Toggle raw display
7373 T8428T6++2226064 T^{8} - 428 T^{6} + \cdots + 2226064 Copy content Toggle raw display
7979 (T4+2T3++8164)2 (T^{4} + 2 T^{3} + \cdots + 8164)^{2} Copy content Toggle raw display
8383 T8350T6++405769 T^{8} - 350 T^{6} + \cdots + 405769 Copy content Toggle raw display
8989 T8606T6++45225625 T^{8} - 606 T^{6} + \cdots + 45225625 Copy content Toggle raw display
9797 T8364T6++310249 T^{8} - 364 T^{6} + \cdots + 310249 Copy content Toggle raw display
show more
show less