Properties

Label 2-91e2-1.1-c1-0-293
Degree $2$
Conductor $8281$
Sign $-1$
Analytic cond. $66.1241$
Root an. cond. $8.13167$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.52·2-s − 2.12·3-s + 0.312·4-s + 0.589·5-s + 3.23·6-s + 2.56·8-s + 1.52·9-s − 0.896·10-s + 1.52·11-s − 0.664·12-s − 1.25·15-s − 4.52·16-s + 4.79·17-s − 2.31·18-s + 1.68·19-s + 0.184·20-s − 2.31·22-s + 1.77·23-s − 5.45·24-s − 4.65·25-s + 3.14·27-s + 6.89·29-s + 1.90·30-s − 6.08·31-s + 1.75·32-s − 3.23·33-s − 7.29·34-s + ⋯
L(s)  = 1  − 1.07·2-s − 1.22·3-s + 0.156·4-s + 0.263·5-s + 1.32·6-s + 0.907·8-s + 0.506·9-s − 0.283·10-s + 0.458·11-s − 0.191·12-s − 0.323·15-s − 1.13·16-s + 1.16·17-s − 0.545·18-s + 0.386·19-s + 0.0412·20-s − 0.493·22-s + 0.369·23-s − 1.11·24-s − 0.930·25-s + 0.605·27-s + 1.27·29-s + 0.347·30-s − 1.09·31-s + 0.310·32-s − 0.562·33-s − 1.25·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8281\)    =    \(7^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(66.1241\)
Root analytic conductor: \(8.13167\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8281,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
13 \( 1 \)
good2 \( 1 + 1.52T + 2T^{2} \)
3 \( 1 + 2.12T + 3T^{2} \)
5 \( 1 - 0.589T + 5T^{2} \)
11 \( 1 - 1.52T + 11T^{2} \)
17 \( 1 - 4.79T + 17T^{2} \)
19 \( 1 - 1.68T + 19T^{2} \)
23 \( 1 - 1.77T + 23T^{2} \)
29 \( 1 - 6.89T + 29T^{2} \)
31 \( 1 + 6.08T + 31T^{2} \)
37 \( 1 - 1.40T + 37T^{2} \)
41 \( 1 - 1.35T + 41T^{2} \)
43 \( 1 + 11.5T + 43T^{2} \)
47 \( 1 + 0.464T + 47T^{2} \)
53 \( 1 - 8.24T + 53T^{2} \)
59 \( 1 + 11.8T + 59T^{2} \)
61 \( 1 - 2.48T + 61T^{2} \)
67 \( 1 + 7.57T + 67T^{2} \)
71 \( 1 - 6.60T + 71T^{2} \)
73 \( 1 + 16.3T + 73T^{2} \)
79 \( 1 + 14.9T + 79T^{2} \)
83 \( 1 - 10.1T + 83T^{2} \)
89 \( 1 - 16.4T + 89T^{2} \)
97 \( 1 + 0.973T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.51116789650292935273687331545, −6.83251816991747628302390376988, −6.12850128810339044300917925846, −5.43938099489233387725037613235, −4.87547424252547275722417765539, −4.01969848250779287701935826843, −2.99914298368258158543816200282, −1.67159926235190607789738035251, −1.00658413089117427348390392908, 0, 1.00658413089117427348390392908, 1.67159926235190607789738035251, 2.99914298368258158543816200282, 4.01969848250779287701935826843, 4.87547424252547275722417765539, 5.43938099489233387725037613235, 6.12850128810339044300917925846, 6.83251816991747628302390376988, 7.51116789650292935273687331545

Graph of the $Z$-function along the critical line