Properties

Label 2-91e2-1.1-c1-0-448
Degree $2$
Conductor $8281$
Sign $-1$
Analytic cond. $66.1241$
Root an. cond. $8.13167$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.43·2-s − 0.753·3-s + 3.91·4-s − 0.341·5-s − 1.83·6-s + 4.65·8-s − 2.43·9-s − 0.830·10-s − 2.43·11-s − 2.95·12-s + 0.257·15-s + 3.49·16-s + 1.94·17-s − 5.91·18-s + 6.29·19-s − 1.33·20-s − 5.91·22-s − 3.68·23-s − 3.51·24-s − 4.88·25-s + 4.09·27-s + 4.44·29-s + 0.625·30-s + 1.97·31-s − 0.808·32-s + 1.83·33-s + 4.73·34-s + ⋯
L(s)  = 1  + 1.71·2-s − 0.435·3-s + 1.95·4-s − 0.152·5-s − 0.748·6-s + 1.64·8-s − 0.810·9-s − 0.262·10-s − 0.733·11-s − 0.851·12-s + 0.0664·15-s + 0.874·16-s + 0.472·17-s − 1.39·18-s + 1.44·19-s − 0.298·20-s − 1.26·22-s − 0.769·23-s − 0.716·24-s − 0.976·25-s + 0.787·27-s + 0.824·29-s + 0.114·30-s + 0.354·31-s − 0.142·32-s + 0.319·33-s + 0.812·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8281\)    =    \(7^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(66.1241\)
Root analytic conductor: \(8.13167\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8281,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
13 \( 1 \)
good2 \( 1 - 2.43T + 2T^{2} \)
3 \( 1 + 0.753T + 3T^{2} \)
5 \( 1 + 0.341T + 5T^{2} \)
11 \( 1 + 2.43T + 11T^{2} \)
17 \( 1 - 1.94T + 17T^{2} \)
19 \( 1 - 6.29T + 19T^{2} \)
23 \( 1 + 3.68T + 23T^{2} \)
29 \( 1 - 4.44T + 29T^{2} \)
31 \( 1 - 1.97T + 31T^{2} \)
37 \( 1 + 9.62T + 37T^{2} \)
41 \( 1 + 12.5T + 41T^{2} \)
43 \( 1 + 8.40T + 43T^{2} \)
47 \( 1 - 9.00T + 47T^{2} \)
53 \( 1 - 1.49T + 53T^{2} \)
59 \( 1 + 0.626T + 59T^{2} \)
61 \( 1 - 1.14T + 61T^{2} \)
67 \( 1 + 5.59T + 67T^{2} \)
71 \( 1 - 9.49T + 71T^{2} \)
73 \( 1 + 11.9T + 73T^{2} \)
79 \( 1 - 4.47T + 79T^{2} \)
83 \( 1 + 1.41T + 83T^{2} \)
89 \( 1 + 12.4T + 89T^{2} \)
97 \( 1 + 10.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.11575451870875000498864428105, −6.58789194792514989070804421125, −5.63182047636269942871347210789, −5.46314690812460276598635946662, −4.83486699147128412982876641762, −3.89820182628633810397672851875, −3.22275343116121289590932936374, −2.66272271148759598725959920376, −1.58149951382022750043497983530, 0, 1.58149951382022750043497983530, 2.66272271148759598725959920376, 3.22275343116121289590932936374, 3.89820182628633810397672851875, 4.83486699147128412982876641762, 5.46314690812460276598635946662, 5.63182047636269942871347210789, 6.58789194792514989070804421125, 7.11575451870875000498864428105

Graph of the $Z$-function along the critical line