L(s) = 1 | + 2-s − 3·3-s − 4-s + 3·5-s − 3·6-s − 3·8-s + 6·9-s + 3·10-s − 3·11-s + 3·12-s − 9·15-s − 16-s − 2·17-s + 6·18-s − 19-s − 3·20-s − 3·22-s + 9·24-s + 4·25-s − 9·27-s + 7·29-s − 9·30-s + 3·31-s + 5·32-s + 9·33-s − 2·34-s − 6·36-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1.73·3-s − 1/2·4-s + 1.34·5-s − 1.22·6-s − 1.06·8-s + 2·9-s + 0.948·10-s − 0.904·11-s + 0.866·12-s − 2.32·15-s − 1/4·16-s − 0.485·17-s + 1.41·18-s − 0.229·19-s − 0.670·20-s − 0.639·22-s + 1.83·24-s + 4/5·25-s − 1.73·27-s + 1.29·29-s − 1.64·30-s + 0.538·31-s + 0.883·32-s + 1.56·33-s − 0.342·34-s − 36-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 - T + p T^{2} \) |
| 3 | \( 1 + p T + p T^{2} \) |
| 5 | \( 1 - 3 T + p T^{2} \) |
| 11 | \( 1 + 3 T + p T^{2} \) |
| 17 | \( 1 + 2 T + p T^{2} \) |
| 19 | \( 1 + T + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 - 7 T + p T^{2} \) |
| 31 | \( 1 - 3 T + p T^{2} \) |
| 37 | \( 1 - 2 T + p T^{2} \) |
| 41 | \( 1 - 3 T + p T^{2} \) |
| 43 | \( 1 + 7 T + p T^{2} \) |
| 47 | \( 1 - T + p T^{2} \) |
| 53 | \( 1 - 3 T + p T^{2} \) |
| 59 | \( 1 + 4 T + p T^{2} \) |
| 61 | \( 1 + 13 T + p T^{2} \) |
| 67 | \( 1 + 3 T + p T^{2} \) |
| 71 | \( 1 - 13 T + p T^{2} \) |
| 73 | \( 1 + 13 T + p T^{2} \) |
| 79 | \( 1 + 3 T + p T^{2} \) |
| 83 | \( 1 + p T^{2} \) |
| 89 | \( 1 - 6 T + p T^{2} \) |
| 97 | \( 1 + 5 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.05362532194932532109578552471, −6.30367620644786691602532205020, −5.99169125898668912910185184504, −5.41357232391496343740671029659, −4.74921498859754640487471102963, −4.45138766055725594219682573053, −3.14255396590887286261559539361, −2.21363063969416839678289895564, −1.06882102719592073190368177529, 0,
1.06882102719592073190368177529, 2.21363063969416839678289895564, 3.14255396590887286261559539361, 4.45138766055725594219682573053, 4.74921498859754640487471102963, 5.41357232391496343740671029659, 5.99169125898668912910185184504, 6.30367620644786691602532205020, 7.05362532194932532109578552471