L(s) = 1 | + (−2.82 + 1.63i)3-s − 1.11·5-s + (−3.79 − 2.18i)7-s + (3.81 − 6.61i)9-s + (−1.09 − 1.89i)11-s + (1 + 3.46i)13-s + (3.15 − 1.81i)15-s + (0.942 − 1.63i)17-s + (2.05 − 3.56i)19-s + 14.2·21-s + (2.05 + 3.56i)23-s − 3.75·25-s + 15.1i·27-s + (−8.28 + 4.78i)29-s + 2i·31-s + ⋯ |
L(s) = 1 | + (−1.63 + 0.941i)3-s − 0.498·5-s + (−1.43 − 0.827i)7-s + (1.27 − 2.20i)9-s + (−0.329 − 0.570i)11-s + (0.277 + 0.960i)13-s + (0.813 − 0.469i)15-s + (0.228 − 0.395i)17-s + (0.472 − 0.818i)19-s + 3.11·21-s + (0.429 + 0.743i)23-s − 0.751·25-s + 2.91i·27-s + (−1.53 + 0.888i)29-s + 0.359i·31-s + ⋯ |
Λ(s)=(=(832s/2ΓC(s)L(s)(0.494−0.869i)Λ(2−s)
Λ(s)=(=(832s/2ΓC(s+1/2)L(s)(0.494−0.869i)Λ(1−s)
Degree: |
2 |
Conductor: |
832
= 26⋅13
|
Sign: |
0.494−0.869i
|
Analytic conductor: |
6.64355 |
Root analytic conductor: |
2.57750 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ832(673,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 832, ( :1/2), 0.494−0.869i)
|
Particular Values
L(1) |
≈ |
0.381200+0.221718i |
L(21) |
≈ |
0.381200+0.221718i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(−1−3.46i)T |
good | 3 | 1+(2.82−1.63i)T+(1.5−2.59i)T2 |
| 5 | 1+1.11T+5T2 |
| 7 | 1+(3.79+2.18i)T+(3.5+6.06i)T2 |
| 11 | 1+(1.09+1.89i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−0.942+1.63i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−2.05+3.56i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−2.05−3.56i)T+(−11.5+19.9i)T2 |
| 29 | 1+(8.28−4.78i)T+(14.5−25.1i)T2 |
| 31 | 1−2iT−31T2 |
| 37 | 1+(1.20+2.08i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−6.17+3.56i)T+(20.5−35.5i)T2 |
| 43 | 1+(−0.892−0.515i)T+(21.5+37.2i)T2 |
| 47 | 1−7.11iT−47T2 |
| 53 | 1+6.30iT−53T2 |
| 59 | 1+(−0.126+0.219i)T+(−29.5−51.0i)T2 |
| 61 | 1+(1.5+0.866i)T+(30.5+52.8i)T2 |
| 67 | 1+(−3.79−6.56i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−10.4−6.00i)T+(35.5+61.4i)T2 |
| 73 | 1−9.36iT−73T2 |
| 79 | 1−5.90T+79T2 |
| 83 | 1−14.7T+83T2 |
| 89 | 1+(−8.28+4.78i)T+(44.5−77.0i)T2 |
| 97 | 1+(−1.5−0.866i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.52373579668064855591024321359, −9.527381996864986956587130632782, −9.242531427299389420766610158718, −7.38539205015700027484341903611, −6.78978620394751888910468397233, −5.91151333684003944968030966180, −5.08930954486058471182581015713, −3.95616532641507565190306080839, −3.44583207735925992756979815829, −0.69647389123063145062076189388,
0.45814125644956027364944069401, 2.17508179707478980544665167586, 3.64348705212428179153206031237, 5.08506704271235924317696348899, 5.94320143288435730475186022703, 6.29681877004968036746832382115, 7.44891029544189423556271099367, 7.971420297164390696329267727239, 9.455178566554113151241622314938, 10.25519412001410546495349664659