L(s) = 1 | + (−2.82 + 1.63i)3-s − 1.11·5-s + (−3.79 − 2.18i)7-s + (3.81 − 6.61i)9-s + (−1.09 − 1.89i)11-s + (1 + 3.46i)13-s + (3.15 − 1.81i)15-s + (0.942 − 1.63i)17-s + (2.05 − 3.56i)19-s + 14.2·21-s + (2.05 + 3.56i)23-s − 3.75·25-s + 15.1i·27-s + (−8.28 + 4.78i)29-s + 2i·31-s + ⋯ |
L(s) = 1 | + (−1.63 + 0.941i)3-s − 0.498·5-s + (−1.43 − 0.827i)7-s + (1.27 − 2.20i)9-s + (−0.329 − 0.570i)11-s + (0.277 + 0.960i)13-s + (0.813 − 0.469i)15-s + (0.228 − 0.395i)17-s + (0.472 − 0.818i)19-s + 3.11·21-s + (0.429 + 0.743i)23-s − 0.751·25-s + 2.91i·27-s + (−1.53 + 0.888i)29-s + 0.359i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.494 - 0.869i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.494 - 0.869i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.381200 + 0.221718i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.381200 + 0.221718i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (-1 - 3.46i)T \) |
good | 3 | \( 1 + (2.82 - 1.63i)T + (1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + 1.11T + 5T^{2} \) |
| 7 | \( 1 + (3.79 + 2.18i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (1.09 + 1.89i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-0.942 + 1.63i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.05 + 3.56i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.05 - 3.56i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (8.28 - 4.78i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 2iT - 31T^{2} \) |
| 37 | \( 1 + (1.20 + 2.08i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-6.17 + 3.56i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.892 - 0.515i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 7.11iT - 47T^{2} \) |
| 53 | \( 1 + 6.30iT - 53T^{2} \) |
| 59 | \( 1 + (-0.126 + 0.219i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (1.5 + 0.866i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.79 - 6.56i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-10.4 - 6.00i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 9.36iT - 73T^{2} \) |
| 79 | \( 1 - 5.90T + 79T^{2} \) |
| 83 | \( 1 - 14.7T + 83T^{2} \) |
| 89 | \( 1 + (-8.28 + 4.78i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-1.5 - 0.866i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.52373579668064855591024321359, −9.527381996864986956587130632782, −9.242531427299389420766610158718, −7.38539205015700027484341903611, −6.78978620394751888910468397233, −5.91151333684003944968030966180, −5.08930954486058471182581015713, −3.95616532641507565190306080839, −3.44583207735925992756979815829, −0.69647389123063145062076189388,
0.45814125644956027364944069401, 2.17508179707478980544665167586, 3.64348705212428179153206031237, 5.08506704271235924317696348899, 5.94320143288435730475186022703, 6.29681877004968036746832382115, 7.44891029544189423556271099367, 7.971420297164390696329267727239, 9.455178566554113151241622314938, 10.25519412001410546495349664659