Properties

Label 832.2.ba.i
Level $832$
Weight $2$
Character orbit 832.ba
Analytic conductor $6.644$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [832,2,Mod(225,832)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(832, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("832.225");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 832.ba (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.64355344817\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.752609431977984.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 15x^{10} + 90x^{8} - 247x^{6} + 270x^{4} + 21x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{9} - \beta_{6} - \beta_{3}) q^{3} + \beta_{4} q^{5} - \beta_{8} q^{7} + (\beta_{2} + 2 \beta_1) q^{9} + ( - \beta_{11} + \beta_{9} + \cdots - \beta_{3}) q^{11} + ( - 4 \beta_1 + 3) q^{13}+ \cdots + ( - \beta_{11} - \beta_{10} + \cdots - 2 \beta_{3}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{9} + 12 q^{13} + 18 q^{17} + 36 q^{21} + 36 q^{25} - 18 q^{29} + 54 q^{33} + 6 q^{37} + 54 q^{41} - 24 q^{45} + 12 q^{49} - 18 q^{61} - 18 q^{69} - 30 q^{81} + 48 q^{85} + 18 q^{89} - 12 q^{93}+ \cdots + 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 15x^{10} + 90x^{8} - 247x^{6} + 270x^{4} + 21x^{2} + 49 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -2\nu^{10} + 83\nu^{8} - 906\nu^{6} + 3874\nu^{4} - 5950\nu^{2} + 1442 ) / 2947 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{10} - 252\nu^{8} + 2558\nu^{6} - 10357\nu^{4} + 14342\nu^{2} - 3668 ) / 2947 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -15\nu^{11} + 1254\nu^{9} - 16057\nu^{7} + 86732\nu^{5} - 217235\nu^{3} + 208264\nu ) / 41258 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -27\nu^{10} + 489\nu^{8} - 2969\nu^{6} + 6410\nu^{4} + 928\nu^{2} - 7056 ) / 2947 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -31\nu^{10} + 234\nu^{8} - 571\nu^{6} + 265\nu^{4} - 26\nu^{2} - 7119 ) / 2947 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -40\nu^{11} + 397\nu^{9} + 404\nu^{7} - 17245\nu^{5} + 61188\nu^{3} - 56623\nu ) / 20629 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 115\nu^{10} - 1615\nu^{8} + 8732\nu^{6} - 19833\nu^{4} + 15429\nu^{2} + 2548 ) / 2947 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 433\nu^{11} - 5550\nu^{9} + 27749\nu^{7} - 61976\nu^{5} + 66433\nu^{3} - 73486\nu ) / 41258 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( -596\nu^{11} + 9157\nu^{9} - 55278\nu^{7} + 151209\nu^{5} - 142146\nu^{3} - 74221\nu ) / 41258 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 346\nu^{11} - 5939\nu^{9} + 40121\nu^{7} - 121218\nu^{5} + 123779\nu^{3} + 65863\nu ) / 20629 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 461\nu^{11} - 6712\nu^{9} + 40433\nu^{7} - 116212\nu^{5} + 149733\nu^{3} - 11158\nu ) / 20629 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 2\beta_{11} - 2\beta_{10} - 2\beta_{9} - 4\beta_{8} - \beta_{6} ) / 6 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{7} + 2\beta_{5} + 2\beta_{4} - \beta_{2} - \beta _1 + 8 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 3\beta_{11} - 2\beta_{10} - 4\beta_{8} - 4\beta_{6} - 2\beta_{3} ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 4\beta_{7} + 11\beta_{5} + 5\beta_{4} - 10\beta_{2} - 13\beta _1 + 29 ) / 3 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 37\beta_{11} + 2\beta_{10} + 50\beta_{9} - 26\beta_{8} - 65\beta_{6} - 24\beta_{3} ) / 6 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 4\beta_{7} + 15\beta_{5} + 2\beta_{4} - 21\beta_{2} - 40\beta _1 + 31 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 148\beta_{11} + 158\beta_{10} + 458\beta_{9} + 22\beta_{8} - 215\beta_{6} - 30\beta_{3} ) / 6 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 14\beta_{7} + 118\beta_{5} - 32\beta_{4} - 326\beta_{2} - 755\beta _1 + 160 ) / 3 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 197\beta_{11} + 420\beta_{10} + 972\beta_{9} + 246\beta_{8} - 38\beta_{6} + 168\beta_{3} ) / 2 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( -82\beta_{7} - 131\beta_{5} - 311\beta_{4} - 1385\beta_{2} - 3599\beta _1 - 953 ) / 3 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( 2345\beta_{11} + 6892\beta_{10} + 14842\beta_{9} + 6062\beta_{8} + 4685\beta_{6} + 5868\beta_{3} ) / 6 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/832\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(703\) \(769\)
\(\chi(n)\) \(-1\) \(1\) \(\beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
225.1
−2.23871 + 0.500000i
0.385124 0.500000i
1.75780 + 0.500000i
−1.75780 0.500000i
−0.385124 + 0.500000i
2.23871 0.500000i
−2.23871 0.500000i
0.385124 + 0.500000i
1.75780 0.500000i
−1.75780 + 0.500000i
−0.385124 0.500000i
2.23871 + 0.500000i
0 −2.82480 1.63090i 0 −1.11575 0 −3.79107 + 2.18878i 0 3.81968 + 6.61587i 0
225.2 0 −1.38709 0.800840i 0 −2.76873 0 1.01070 0.583528i 0 −0.217312 0.376395i 0
225.3 0 −1.16037 0.669938i 0 3.88448 0 2.20369 1.27230i 0 −0.602365 1.04333i 0
225.4 0 1.16037 + 0.669938i 0 3.88448 0 −2.20369 + 1.27230i 0 −0.602365 1.04333i 0
225.5 0 1.38709 + 0.800840i 0 −2.76873 0 −1.01070 + 0.583528i 0 −0.217312 0.376395i 0
225.6 0 2.82480 + 1.63090i 0 −1.11575 0 3.79107 2.18878i 0 3.81968 + 6.61587i 0
673.1 0 −2.82480 + 1.63090i 0 −1.11575 0 −3.79107 2.18878i 0 3.81968 6.61587i 0
673.2 0 −1.38709 + 0.800840i 0 −2.76873 0 1.01070 + 0.583528i 0 −0.217312 + 0.376395i 0
673.3 0 −1.16037 + 0.669938i 0 3.88448 0 2.20369 + 1.27230i 0 −0.602365 + 1.04333i 0
673.4 0 1.16037 0.669938i 0 3.88448 0 −2.20369 1.27230i 0 −0.602365 + 1.04333i 0
673.5 0 1.38709 0.800840i 0 −2.76873 0 −1.01070 0.583528i 0 −0.217312 + 0.376395i 0
673.6 0 2.82480 1.63090i 0 −1.11575 0 3.79107 + 2.18878i 0 3.81968 6.61587i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 225.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
104.p odd 6 1 inner
104.s even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 832.2.ba.i yes 12
4.b odd 2 1 inner 832.2.ba.i yes 12
8.b even 2 1 832.2.ba.h 12
8.d odd 2 1 832.2.ba.h 12
13.e even 6 1 832.2.ba.h 12
52.i odd 6 1 832.2.ba.h 12
104.p odd 6 1 inner 832.2.ba.i yes 12
104.s even 6 1 inner 832.2.ba.i yes 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
832.2.ba.h 12 8.b even 2 1
832.2.ba.h 12 8.d odd 2 1
832.2.ba.h 12 13.e even 6 1
832.2.ba.h 12 52.i odd 6 1
832.2.ba.i yes 12 1.a even 1 1 trivial
832.2.ba.i yes 12 4.b odd 2 1 inner
832.2.ba.i yes 12 104.p odd 6 1 inner
832.2.ba.i yes 12 104.s even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(832, [\chi])\):

\( T_{3}^{12} - 15T_{3}^{10} + 174T_{3}^{8} - 667T_{3}^{6} + 1866T_{3}^{4} - 2499T_{3}^{2} + 2401 \) Copy content Toggle raw display
\( T_{5}^{3} - 12T_{5} - 12 \) Copy content Toggle raw display
\( T_{23}^{12} + 81T_{23}^{10} + 5346T_{23}^{8} + 94041T_{23}^{6} + 1299078T_{23}^{4} + 2657205T_{23}^{2} + 4782969 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} \) Copy content Toggle raw display
$3$ \( T^{12} - 15 T^{10} + \cdots + 2401 \) Copy content Toggle raw display
$5$ \( (T^{3} - 12 T - 12)^{4} \) Copy content Toggle raw display
$7$ \( T^{12} - 27 T^{10} + \cdots + 28561 \) Copy content Toggle raw display
$11$ \( T^{12} + 45 T^{10} + \cdots + 59049 \) Copy content Toggle raw display
$13$ \( (T^{2} - 2 T + 13)^{6} \) Copy content Toggle raw display
$17$ \( (T^{6} - 9 T^{5} + 66 T^{4} + \cdots + 9)^{2} \) Copy content Toggle raw display
$19$ \( T^{12} + 81 T^{10} + \cdots + 4782969 \) Copy content Toggle raw display
$23$ \( T^{12} + 81 T^{10} + \cdots + 4782969 \) Copy content Toggle raw display
$29$ \( (T^{6} + 9 T^{5} + \cdots + 41067)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 4)^{6} \) Copy content Toggle raw display
$37$ \( (T^{6} - 3 T^{5} + \cdots + 5929)^{2} \) Copy content Toggle raw display
$41$ \( (T^{6} - 27 T^{5} + \cdots + 11907)^{2} \) Copy content Toggle raw display
$43$ \( T^{12} - 135 T^{10} + \cdots + 20151121 \) Copy content Toggle raw display
$47$ \( (T^{6} + 132 T^{4} + \cdots + 17424)^{2} \) Copy content Toggle raw display
$53$ \( (T^{6} + 180 T^{4} + \cdots + 190512)^{2} \) Copy content Toggle raw display
$59$ \( T^{12} + 153 T^{10} + \cdots + 59049 \) Copy content Toggle raw display
$61$ \( (T^{2} + 3 T + 3)^{6} \) Copy content Toggle raw display
$67$ \( T^{12} + 81 T^{10} + \cdots + 20820969 \) Copy content Toggle raw display
$71$ \( T^{12} - 159 T^{10} + \cdots + 1185921 \) Copy content Toggle raw display
$73$ \( (T^{6} + 324 T^{4} + \cdots + 1213488)^{2} \) Copy content Toggle raw display
$79$ \( (T^{6} - 288 T^{4} + \cdots - 415152)^{2} \) Copy content Toggle raw display
$83$ \( (T^{6} - 288 T^{4} + \cdots - 62208)^{2} \) Copy content Toggle raw display
$89$ \( (T^{6} - 9 T^{5} + \cdots + 41067)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} - 3 T + 3)^{6} \) Copy content Toggle raw display
show more
show less