L(s) = 1 | + (1.16 − 0.669i)3-s + 3.88·5-s + (−2.20 − 1.27i)7-s + (−0.602 + 1.04i)9-s + (−0.571 − 0.990i)11-s + (1 + 3.46i)13-s + (4.50 − 2.60i)15-s + (3.44 − 5.96i)17-s + (3.93 − 6.81i)19-s − 3.40·21-s + (3.93 + 6.81i)23-s + 10.0·25-s + 5.63i·27-s + (−2.51 + 1.45i)29-s − 2i·31-s + ⋯ |
L(s) = 1 | + (0.669 − 0.386i)3-s + 1.73·5-s + (−0.832 − 0.480i)7-s + (−0.200 + 0.347i)9-s + (−0.172 − 0.298i)11-s + (0.277 + 0.960i)13-s + (1.16 − 0.671i)15-s + (0.834 − 1.44i)17-s + (0.902 − 1.56i)19-s − 0.744·21-s + (0.820 + 1.42i)23-s + 2.01·25-s + 1.08i·27-s + (−0.467 + 0.270i)29-s − 0.359i·31-s + ⋯ |
Λ(s)=(=(832s/2ΓC(s)L(s)(0.869+0.494i)Λ(2−s)
Λ(s)=(=(832s/2ΓC(s+1/2)L(s)(0.869+0.494i)Λ(1−s)
Degree: |
2 |
Conductor: |
832
= 26⋅13
|
Sign: |
0.869+0.494i
|
Analytic conductor: |
6.64355 |
Root analytic conductor: |
2.57750 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ832(673,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 832, ( :1/2), 0.869+0.494i)
|
Particular Values
L(1) |
≈ |
2.33496−0.617636i |
L(21) |
≈ |
2.33496−0.617636i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(−1−3.46i)T |
good | 3 | 1+(−1.16+0.669i)T+(1.5−2.59i)T2 |
| 5 | 1−3.88T+5T2 |
| 7 | 1+(2.20+1.27i)T+(3.5+6.06i)T2 |
| 11 | 1+(0.571+0.990i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−3.44+5.96i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−3.93+6.81i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−3.93−6.81i)T+(−11.5+19.9i)T2 |
| 29 | 1+(2.51−1.45i)T+(14.5−25.1i)T2 |
| 31 | 1+2iT−31T2 |
| 37 | 1+(1.78+3.08i)T+(−18.5+32.0i)T2 |
| 41 | 1+(1.32−0.765i)T+(20.5−35.5i)T2 |
| 43 | 1+(7.88+4.55i)T+(21.5+37.2i)T2 |
| 47 | 1+2.11iT−47T2 |
| 53 | 1−9.01iT−53T2 |
| 59 | 1+(2.79−4.83i)T+(−29.5−51.0i)T2 |
| 61 | 1+(1.5+0.866i)T+(30.5+52.8i)T2 |
| 67 | 1+(−2.20−3.81i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−3.24−1.87i)T+(35.5+61.4i)T2 |
| 73 | 1−11.3iT−73T2 |
| 79 | 1+7.90T+79T2 |
| 83 | 1+8.10T+83T2 |
| 89 | 1+(−2.51+1.45i)T+(44.5−77.0i)T2 |
| 97 | 1+(−1.5−0.866i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.755159962108812489103450281697, −9.423442935699565624874176571896, −8.754802161430476856232624512143, −7.21630139756258986465983299841, −6.98855079199724988041186609847, −5.66293996122109900123101248699, −5.08229428260084848720907617240, −3.26921829795448337146472742727, −2.57110836353210612464246590619, −1.32546201315778917061428781216,
1.58485609718571830350414076191, 2.86837494947179096262979113107, 3.50605576327557643668248723002, 5.18163529754914898832567140484, 5.99858244959645947669211531268, 6.44199924181915001488702170303, 8.038014489630476176390560621871, 8.715766237538948984127176885873, 9.690287803272624712761754973841, 9.971537513020996681473802269725