L(s) = 1 | − 6·3-s + 6·5-s + 8·7-s + 16·9-s − 12·11-s + 6·13-s − 36·15-s − 12·17-s + 2·19-s − 48·21-s − 6·23-s + 18·25-s − 24·27-s − 6·29-s + 8·31-s + 72·33-s + 48·35-s + 8·37-s − 36·39-s − 12·41-s + 4·43-s + 96·45-s + 24·47-s + 44·49-s + 72·51-s + 24·53-s − 72·55-s + ⋯ |
L(s) = 1 | − 3.46·3-s + 2.68·5-s + 3.02·7-s + 16/3·9-s − 3.61·11-s + 1.66·13-s − 9.29·15-s − 2.91·17-s + 0.458·19-s − 10.4·21-s − 1.25·23-s + 18/5·25-s − 4.61·27-s − 1.11·29-s + 1.43·31-s + 12.5·33-s + 8.11·35-s + 1.31·37-s − 5.76·39-s − 1.87·41-s + 0.609·43-s + 14.3·45-s + 3.50·47-s + 44/7·49-s + 10.0·51-s + 3.29·53-s − 9.70·55-s + ⋯ |
Λ(s)=(=((224⋅134)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((224⋅134)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
224⋅134
|
Sign: |
1
|
Analytic conductor: |
1948.05 |
Root analytic conductor: |
2.57750 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 224⋅134, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.152564707 |
L(21) |
≈ |
1.152564707 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 13 | C22 | 1−6T+23T2−6pT3+p2T4 |
good | 3 | D4×C2 | 1+2pT+20T2+16pT3+91T4+16p2T5+20p2T6+2p4T7+p4T8 |
| 5 | C22×C22 | (1−4T+11T2−4pT3+p2T4)(1−2T−T2−2pT3+p2T4) |
| 7 | D4×C2 | 1−8T+20T2+12T3−145T4+12pT5+20p2T6−8p3T7+p4T8 |
| 11 | C23 | 1+12T+72T2+288T3+983T4+288pT5+72p2T6+12p3T7+p4T8 |
| 17 | D4×C2 | 1+12T+5pT2+444T3+1896T4+444pT5+5p3T6+12p3T7+p4T8 |
| 19 | C2×C22 | (1−T+pT2)2(1+11T2+p2T4) |
| 23 | D4×C2 | 1+6T−16T2+36T3+1347T4+36pT5−16p2T6+6p3T7+p4T8 |
| 29 | C22 | (1+3T−20T2+3pT3+p2T4)2 |
| 31 | D4×C2 | 1−8T+32T2−264T3+2174T4−264pT5+32p2T6−8p3T7+p4T8 |
| 37 | C2×C22 | (1+2T+pT2)2(1−12T+107T2−12pT3+p2T4) |
| 41 | D4×C2 | 1+12T+117T2+840T3+5804T4+840pT5+117p2T6+12p3T7+p4T8 |
| 43 | C22 | (1−2T−39T2−2pT3+p2T4)2 |
| 47 | D4×C2 | 1−24T+288T2−2712T3+21182T4−2712pT5+288p2T6−24p3T7+p4T8 |
| 53 | D4 | (1−12T+139T2−12pT3+p2T4)2 |
| 59 | D4×C2 | 1+12T+36T2−12pT3−9001T4−12p2T5+36p2T6+12p3T7+p4T8 |
| 61 | C23 | 1−95T2+5304T4−95p2T6+p4T8 |
| 67 | D4×C2 | 1−10T+194T2−1644T3+18239T4−1644pT5+194p2T6−10p3T7+p4T8 |
| 71 | C23 | 1−6T+18T2−36T3−4153T4−36pT5+18p2T6−6p3T7+p4T8 |
| 73 | D4×C2 | 1+14T+98T2+1176T3+13991T4+1176pT5+98p2T6+14p3T7+p4T8 |
| 79 | D4×C2 | 1−92T2+12870T4−92p2T6+p4T8 |
| 83 | D4×C2 | 1+12T+72T2+564T3+3122T4+564pT5+72p2T6+12p3T7+p4T8 |
| 89 | C23 | 1−18T+162T2−972T3+4607T4−972pT5+162p2T6−18p3T7+p4T8 |
| 97 | D4×C2 | 1−26T+2pT2+1332T3−32593T4+1332pT5+2p3T6−26p3T7+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.36039100459451827030183113297, −7.01114795513029696137610828163, −6.74649012842567371443288662366, −6.28792554110948242848040496863, −6.09305563543480897186860096597, −6.00650846145920164572244645303, −5.93562871194940635801598101801, −5.75974631652799478148637042073, −5.50973482323966908056885013825, −5.32250500447841829932095173491, −4.99879187951165816534608027134, −4.96866723654543807378392220498, −4.86405898065164734075100601748, −4.54107629869485486917867626128, −4.21922874103801157219867621943, −3.95153074090327286059396727939, −3.53436304763043971305971134997, −2.56296925648340434243643081461, −2.49311733868751128281371914291, −2.39191378306723175061536677328, −1.98993652277652155637907004600, −1.94830438493260294608273274510, −1.20535291398892866975302546881, −0.906688163752870335751279372566, −0.40660087288661687601838351112,
0.40660087288661687601838351112, 0.906688163752870335751279372566, 1.20535291398892866975302546881, 1.94830438493260294608273274510, 1.98993652277652155637907004600, 2.39191378306723175061536677328, 2.49311733868751128281371914291, 2.56296925648340434243643081461, 3.53436304763043971305971134997, 3.95153074090327286059396727939, 4.21922874103801157219867621943, 4.54107629869485486917867626128, 4.86405898065164734075100601748, 4.96866723654543807378392220498, 4.99879187951165816534608027134, 5.32250500447841829932095173491, 5.50973482323966908056885013825, 5.75974631652799478148637042073, 5.93562871194940635801598101801, 6.00650846145920164572244645303, 6.09305563543480897186860096597, 6.28792554110948242848040496863, 6.74649012842567371443288662366, 7.01114795513029696137610828163, 7.36039100459451827030183113297