Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [832,2,Mod(63,832)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(832, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([6, 0, 7]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("832.63");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 832.bu (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 208) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a primitive root of unity . We also show the integral -expansion of the trace form.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
63.1 |
|
0 | −0.633975 | + | 0.366025i | 0 | 2.36603 | + | 2.36603i | 0 | 3.73205 | − | 1.00000i | 0 | −1.23205 | + | 2.13397i | 0 | ||||||||||||||||||||||
319.1 | 0 | −2.36603 | − | 1.36603i | 0 | 0.633975 | + | 0.633975i | 0 | 0.267949 | − | 1.00000i | 0 | 2.23205 | + | 3.86603i | 0 | |||||||||||||||||||||||
383.1 | 0 | −0.633975 | − | 0.366025i | 0 | 2.36603 | − | 2.36603i | 0 | 3.73205 | + | 1.00000i | 0 | −1.23205 | − | 2.13397i | 0 | |||||||||||||||||||||||
639.1 | 0 | −2.36603 | + | 1.36603i | 0 | 0.633975 | − | 0.633975i | 0 | 0.267949 | + | 1.00000i | 0 | 2.23205 | − | 3.86603i | 0 | |||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
52.l | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 832.2.bu.c | 4 | |
4.b | odd | 2 | 1 | 832.2.bu.h | 4 | ||
8.b | even | 2 | 1 | 208.2.bm.d | yes | 4 | |
8.d | odd | 2 | 1 | 208.2.bm.a | ✓ | 4 | |
13.f | odd | 12 | 1 | 832.2.bu.h | 4 | ||
52.l | even | 12 | 1 | inner | 832.2.bu.c | 4 | |
104.u | even | 12 | 1 | 208.2.bm.d | yes | 4 | |
104.x | odd | 12 | 1 | 208.2.bm.a | ✓ | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
208.2.bm.a | ✓ | 4 | 8.d | odd | 2 | 1 | |
208.2.bm.a | ✓ | 4 | 104.x | odd | 12 | 1 | |
208.2.bm.d | yes | 4 | 8.b | even | 2 | 1 | |
208.2.bm.d | yes | 4 | 104.u | even | 12 | 1 | |
832.2.bu.c | 4 | 1.a | even | 1 | 1 | trivial | |
832.2.bu.c | 4 | 52.l | even | 12 | 1 | inner | |
832.2.bu.h | 4 | 4.b | odd | 2 | 1 | ||
832.2.bu.h | 4 | 13.f | odd | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|