Properties

Label 832.2.bu.c
Level 832832
Weight 22
Character orbit 832.bu
Analytic conductor 6.6446.644
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [832,2,Mod(63,832)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(832, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 0, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("832.63");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 832=2613 832 = 2^{6} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 832.bu (of order 1212, degree 44, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.643553448176.64355344817
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a9]\Z[a_1, \ldots, a_{9}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 208)
Sato-Tate group: SU(2)[C12]\mathrm{SU}(2)[C_{12}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ12\zeta_{12}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ123+ζ122+2)q3+(ζ123+ζ122++1)q5+(2ζ1232ζ12+2)q7+(4ζ123ζ122++1)q9++(14ζ123+4ζ122+14)q99+O(q100) q + (\zeta_{12}^{3} + \zeta_{12}^{2} + \cdots - 2) q^{3} + ( - \zeta_{12}^{3} + \zeta_{12}^{2} + \cdots + 1) q^{5} + (2 \zeta_{12}^{3} - 2 \zeta_{12} + 2) q^{7} + ( - 4 \zeta_{12}^{3} - \zeta_{12}^{2} + \cdots + 1) q^{9}+ \cdots + (14 \zeta_{12}^{3} + 4 \zeta_{12}^{2} + \cdots - 14) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q6q3+6q5+8q7+2q912q11+6q136q1512q17+2q198q216q236q29+8q31+24q33+24q35+8q3722q3912q41+48q99+O(q100) 4 q - 6 q^{3} + 6 q^{5} + 8 q^{7} + 2 q^{9} - 12 q^{11} + 6 q^{13} - 6 q^{15} - 12 q^{17} + 2 q^{19} - 8 q^{21} - 6 q^{23} - 6 q^{29} + 8 q^{31} + 24 q^{33} + 24 q^{35} + 8 q^{37} - 22 q^{39} - 12 q^{41}+ \cdots - 48 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/832Z)×\left(\mathbb{Z}/832\mathbb{Z}\right)^\times.

nn 261261 703703 769769
χ(n)\chi(n) 11 1-1 ζ12\zeta_{12}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
63.1
−0.866025 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
0 −0.633975 + 0.366025i 0 2.36603 + 2.36603i 0 3.73205 1.00000i 0 −1.23205 + 2.13397i 0
319.1 0 −2.36603 1.36603i 0 0.633975 + 0.633975i 0 0.267949 1.00000i 0 2.23205 + 3.86603i 0
383.1 0 −0.633975 0.366025i 0 2.36603 2.36603i 0 3.73205 + 1.00000i 0 −1.23205 2.13397i 0
639.1 0 −2.36603 + 1.36603i 0 0.633975 0.633975i 0 0.267949 + 1.00000i 0 2.23205 3.86603i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
52.l even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 832.2.bu.c 4
4.b odd 2 1 832.2.bu.h 4
8.b even 2 1 208.2.bm.d yes 4
8.d odd 2 1 208.2.bm.a 4
13.f odd 12 1 832.2.bu.h 4
52.l even 12 1 inner 832.2.bu.c 4
104.u even 12 1 208.2.bm.d yes 4
104.x odd 12 1 208.2.bm.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
208.2.bm.a 4 8.d odd 2 1
208.2.bm.a 4 104.x odd 12 1
208.2.bm.d yes 4 8.b even 2 1
208.2.bm.d yes 4 104.u even 12 1
832.2.bu.c 4 1.a even 1 1 trivial
832.2.bu.c 4 52.l even 12 1 inner
832.2.bu.h 4 4.b odd 2 1
832.2.bu.h 4 13.f odd 12 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(832,[χ])S_{2}^{\mathrm{new}}(832, [\chi]):

T34+6T33+14T32+12T3+4 T_{3}^{4} + 6T_{3}^{3} + 14T_{3}^{2} + 12T_{3} + 4 Copy content Toggle raw display
T546T53+18T5218T5+9 T_{5}^{4} - 6T_{5}^{3} + 18T_{5}^{2} - 18T_{5} + 9 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4+6T3++4 T^{4} + 6 T^{3} + \cdots + 4 Copy content Toggle raw display
55 T46T3++9 T^{4} - 6 T^{3} + \cdots + 9 Copy content Toggle raw display
77 T48T3++16 T^{4} - 8 T^{3} + \cdots + 16 Copy content Toggle raw display
1111 T4+12T3++576 T^{4} + 12 T^{3} + \cdots + 576 Copy content Toggle raw display
1313 T46T3++169 T^{4} - 6 T^{3} + \cdots + 169 Copy content Toggle raw display
1717 T4+12T3++9 T^{4} + 12 T^{3} + \cdots + 9 Copy content Toggle raw display
1919 T42T3++676 T^{4} - 2 T^{3} + \cdots + 676 Copy content Toggle raw display
2323 T4+6T3++36 T^{4} + 6 T^{3} + \cdots + 36 Copy content Toggle raw display
2929 (T2+3T+9)2 (T^{2} + 3 T + 9)^{2} Copy content Toggle raw display
3131 T48T3++4 T^{4} - 8 T^{3} + \cdots + 4 Copy content Toggle raw display
3737 T48T3++169 T^{4} - 8 T^{3} + \cdots + 169 Copy content Toggle raw display
4141 T4+12T3++1089 T^{4} + 12 T^{3} + \cdots + 1089 Copy content Toggle raw display
4343 (T22T+4)2 (T^{2} - 2 T + 4)^{2} Copy content Toggle raw display
4747 T424T3++4356 T^{4} - 24 T^{3} + \cdots + 4356 Copy content Toggle raw display
5353 (T212T+33)2 (T^{2} - 12 T + 33)^{2} Copy content Toggle raw display
5959 T4+12T3++144 T^{4} + 12 T^{3} + \cdots + 144 Copy content Toggle raw display
6161 T4+27T2+729 T^{4} + 27T^{2} + 729 Copy content Toggle raw display
6767 T410T3++484 T^{4} - 10 T^{3} + \cdots + 484 Copy content Toggle raw display
7171 T46T3++36 T^{4} - 6 T^{3} + \cdots + 36 Copy content Toggle raw display
7373 T4+14T3++121 T^{4} + 14 T^{3} + \cdots + 121 Copy content Toggle raw display
7979 T4+224T2+10816 T^{4} + 224 T^{2} + 10816 Copy content Toggle raw display
8383 T4+12T3++1296 T^{4} + 12 T^{3} + \cdots + 1296 Copy content Toggle raw display
8989 T418T3++2916 T^{4} - 18 T^{3} + \cdots + 2916 Copy content Toggle raw display
9797 T426T3++484 T^{4} - 26 T^{3} + \cdots + 484 Copy content Toggle raw display
show more
show less