Properties

Label 2-832-52.7-c1-0-3
Degree 22
Conductor 832832
Sign 0.5330.846i0.533 - 0.846i
Analytic cond. 6.643556.64355
Root an. cond. 2.577502.57750
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.36 − 1.36i)3-s + (0.633 + 0.633i)5-s + (0.267 − i)7-s + (2.23 + 3.86i)9-s + (−4.73 + 1.26i)11-s + (3.23 − 1.59i)13-s + (−0.633 − 2.36i)15-s + (−5.59 + 3.23i)17-s + (3.09 + 0.830i)19-s + (−2 + 2i)21-s + (−2.36 + 4.09i)23-s − 4.19i·25-s − 4.00i·27-s + (−1.5 + 2.59i)29-s + (3.73 − 3.73i)31-s + ⋯
L(s)  = 1  + (−1.36 − 0.788i)3-s + (0.283 + 0.283i)5-s + (0.101 − 0.377i)7-s + (0.744 + 1.28i)9-s + (−1.42 + 0.382i)11-s + (0.896 − 0.443i)13-s + (−0.163 − 0.610i)15-s + (−1.35 + 0.783i)17-s + (0.710 + 0.190i)19-s + (−0.436 + 0.436i)21-s + (−0.493 + 0.854i)23-s − 0.839i·25-s − 0.769i·27-s + (−0.278 + 0.482i)29-s + (0.670 − 0.670i)31-s + ⋯

Functional equation

Λ(s)=(832s/2ΓC(s)L(s)=((0.5330.846i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.533 - 0.846i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(832s/2ΓC(s+1/2)L(s)=((0.5330.846i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.533 - 0.846i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 832832    =    26132^{6} \cdot 13
Sign: 0.5330.846i0.533 - 0.846i
Analytic conductor: 6.643556.64355
Root analytic conductor: 2.577502.57750
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ832(319,)\chi_{832} (319, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 832, ( :1/2), 0.5330.846i)(2,\ 832,\ (\ :1/2),\ 0.533 - 0.846i)

Particular Values

L(1)L(1) \approx 0.548917+0.302941i0.548917 + 0.302941i
L(12)L(\frac12) \approx 0.548917+0.302941i0.548917 + 0.302941i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
13 1+(3.23+1.59i)T 1 + (-3.23 + 1.59i)T
good3 1+(2.36+1.36i)T+(1.5+2.59i)T2 1 + (2.36 + 1.36i)T + (1.5 + 2.59i)T^{2}
5 1+(0.6330.633i)T+5iT2 1 + (-0.633 - 0.633i)T + 5iT^{2}
7 1+(0.267+i)T+(6.063.5i)T2 1 + (-0.267 + i)T + (-6.06 - 3.5i)T^{2}
11 1+(4.731.26i)T+(9.525.5i)T2 1 + (4.73 - 1.26i)T + (9.52 - 5.5i)T^{2}
17 1+(5.593.23i)T+(8.514.7i)T2 1 + (5.59 - 3.23i)T + (8.5 - 14.7i)T^{2}
19 1+(3.090.830i)T+(16.4+9.5i)T2 1 + (-3.09 - 0.830i)T + (16.4 + 9.5i)T^{2}
23 1+(2.364.09i)T+(11.519.9i)T2 1 + (2.36 - 4.09i)T + (-11.5 - 19.9i)T^{2}
29 1+(1.52.59i)T+(14.525.1i)T2 1 + (1.5 - 2.59i)T + (-14.5 - 25.1i)T^{2}
31 1+(3.73+3.73i)T31iT2 1 + (-3.73 + 3.73i)T - 31iT^{2}
37 1+(2.8610.6i)T+(32.0+18.5i)T2 1 + (-2.86 - 10.6i)T + (-32.0 + 18.5i)T^{2}
41 1+(3.861.03i)T+(35.520.5i)T2 1 + (3.86 - 1.03i)T + (35.5 - 20.5i)T^{2}
43 1+(11.73i)T+(21.5+37.2i)T2 1 + (-1 - 1.73i)T + (-21.5 + 37.2i)T^{2}
47 1+(7.737.73i)T+47iT2 1 + (-7.73 - 7.73i)T + 47iT^{2}
53 17.73T+53T2 1 - 7.73T + 53T^{2}
59 1+(0.464+1.73i)T+(51.029.5i)T2 1 + (-0.464 + 1.73i)T + (-51.0 - 29.5i)T^{2}
61 1+(2.59+4.5i)T+(30.5+52.8i)T2 1 + (2.59 + 4.5i)T + (-30.5 + 52.8i)T^{2}
67 1+(3.3612.5i)T+(58.0+33.5i)T2 1 + (-3.36 - 12.5i)T + (-58.0 + 33.5i)T^{2}
71 1+(2.360.633i)T+(61.4+35.5i)T2 1 + (-2.36 - 0.633i)T + (61.4 + 35.5i)T^{2}
73 1+(6.096.09i)T73iT2 1 + (6.09 - 6.09i)T - 73iT^{2}
79 112.3iT79T2 1 - 12.3iT - 79T^{2}
83 1+(2.19+2.19i)T83iT2 1 + (-2.19 + 2.19i)T - 83iT^{2}
89 1+(1.907.09i)T+(77.0+44.5i)T2 1 + (-1.90 - 7.09i)T + (-77.0 + 44.5i)T^{2}
97 1+(0.437+1.63i)T+(84.048.5i)T2 1 + (-0.437 + 1.63i)T + (-84.0 - 48.5i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.56905776234469501754943470461, −9.878214772040457316947107874886, −8.370444995412130037594570757844, −7.64921383491555513033059213511, −6.74649012842567371443288662366, −6.00650846145920164572244645303, −5.32250500447841829932095173491, −4.21922874103801157219867621943, −2.56296925648340434243643081461, −1.20535291398892866975302546881, 0.40660087288661687601838351112, 2.39191378306723175061536677328, 3.95153074090327286059396727939, 4.96866723654543807378392220498, 5.50973482323966908056885013825, 6.28792554110948242848040496863, 7.36039100459451827030183113297, 8.667672070933985001159675581802, 9.274740112214517414234903492204, 10.40377864107047625840351616772

Graph of the ZZ-function along the critical line