L(s) = 1 | + (−2.36 − 1.36i)3-s + (0.633 + 0.633i)5-s + (0.267 − i)7-s + (2.23 + 3.86i)9-s + (−4.73 + 1.26i)11-s + (3.23 − 1.59i)13-s + (−0.633 − 2.36i)15-s + (−5.59 + 3.23i)17-s + (3.09 + 0.830i)19-s + (−2 + 2i)21-s + (−2.36 + 4.09i)23-s − 4.19i·25-s − 4.00i·27-s + (−1.5 + 2.59i)29-s + (3.73 − 3.73i)31-s + ⋯ |
L(s) = 1 | + (−1.36 − 0.788i)3-s + (0.283 + 0.283i)5-s + (0.101 − 0.377i)7-s + (0.744 + 1.28i)9-s + (−1.42 + 0.382i)11-s + (0.896 − 0.443i)13-s + (−0.163 − 0.610i)15-s + (−1.35 + 0.783i)17-s + (0.710 + 0.190i)19-s + (−0.436 + 0.436i)21-s + (−0.493 + 0.854i)23-s − 0.839i·25-s − 0.769i·27-s + (−0.278 + 0.482i)29-s + (0.670 − 0.670i)31-s + ⋯ |
Λ(s)=(=(832s/2ΓC(s)L(s)(0.533−0.846i)Λ(2−s)
Λ(s)=(=(832s/2ΓC(s+1/2)L(s)(0.533−0.846i)Λ(1−s)
Degree: |
2 |
Conductor: |
832
= 26⋅13
|
Sign: |
0.533−0.846i
|
Analytic conductor: |
6.64355 |
Root analytic conductor: |
2.57750 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ832(319,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 832, ( :1/2), 0.533−0.846i)
|
Particular Values
L(1) |
≈ |
0.548917+0.302941i |
L(21) |
≈ |
0.548917+0.302941i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(−3.23+1.59i)T |
good | 3 | 1+(2.36+1.36i)T+(1.5+2.59i)T2 |
| 5 | 1+(−0.633−0.633i)T+5iT2 |
| 7 | 1+(−0.267+i)T+(−6.06−3.5i)T2 |
| 11 | 1+(4.73−1.26i)T+(9.52−5.5i)T2 |
| 17 | 1+(5.59−3.23i)T+(8.5−14.7i)T2 |
| 19 | 1+(−3.09−0.830i)T+(16.4+9.5i)T2 |
| 23 | 1+(2.36−4.09i)T+(−11.5−19.9i)T2 |
| 29 | 1+(1.5−2.59i)T+(−14.5−25.1i)T2 |
| 31 | 1+(−3.73+3.73i)T−31iT2 |
| 37 | 1+(−2.86−10.6i)T+(−32.0+18.5i)T2 |
| 41 | 1+(3.86−1.03i)T+(35.5−20.5i)T2 |
| 43 | 1+(−1−1.73i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−7.73−7.73i)T+47iT2 |
| 53 | 1−7.73T+53T2 |
| 59 | 1+(−0.464+1.73i)T+(−51.0−29.5i)T2 |
| 61 | 1+(2.59+4.5i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−3.36−12.5i)T+(−58.0+33.5i)T2 |
| 71 | 1+(−2.36−0.633i)T+(61.4+35.5i)T2 |
| 73 | 1+(6.09−6.09i)T−73iT2 |
| 79 | 1−12.3iT−79T2 |
| 83 | 1+(−2.19+2.19i)T−83iT2 |
| 89 | 1+(−1.90−7.09i)T+(−77.0+44.5i)T2 |
| 97 | 1+(−0.437+1.63i)T+(−84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.56905776234469501754943470461, −9.878214772040457316947107874886, −8.370444995412130037594570757844, −7.64921383491555513033059213511, −6.74649012842567371443288662366, −6.00650846145920164572244645303, −5.32250500447841829932095173491, −4.21922874103801157219867621943, −2.56296925648340434243643081461, −1.20535291398892866975302546881,
0.40660087288661687601838351112, 2.39191378306723175061536677328, 3.95153074090327286059396727939, 4.96866723654543807378392220498, 5.50973482323966908056885013825, 6.28792554110948242848040496863, 7.36039100459451827030183113297, 8.667672070933985001159675581802, 9.274740112214517414234903492204, 10.40377864107047625840351616772