L(s) = 1 | + (−2.15 + 2.15i)3-s + (0.707 − 0.707i)5-s − 0.223·7-s − 6.31i·9-s + (1.41 − 1.41i)11-s + (1.34 + 3.34i)13-s + 3.05i·15-s + 3·17-s + (4.46 + 4.46i)19-s + (0.483 − 0.483i)21-s − 6.31i·23-s + 4i·25-s + (7.15 + 7.15i)27-s + (0.316 − 0.316i)29-s − 4.24i·31-s + ⋯ |
L(s) = 1 | + (−1.24 + 1.24i)3-s + (0.316 − 0.316i)5-s − 0.0846·7-s − 2.10i·9-s + (0.426 − 0.426i)11-s + (0.373 + 0.927i)13-s + 0.788i·15-s + 0.727·17-s + (1.02 + 1.02i)19-s + (0.105 − 0.105i)21-s − 1.31i·23-s + 0.800i·25-s + (1.37 + 1.37i)27-s + (0.0587 − 0.0587i)29-s − 0.762i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0103 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0103 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.744734 + 0.737060i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.744734 + 0.737060i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (-1.34 - 3.34i)T \) |
good | 3 | \( 1 + (2.15 - 2.15i)T - 3iT^{2} \) |
| 5 | \( 1 + (-0.707 + 0.707i)T - 5iT^{2} \) |
| 7 | \( 1 + 0.223T + 7T^{2} \) |
| 11 | \( 1 + (-1.41 + 1.41i)T - 11iT^{2} \) |
| 17 | \( 1 - 3T + 17T^{2} \) |
| 19 | \( 1 + (-4.46 - 4.46i)T + 19iT^{2} \) |
| 23 | \( 1 + 6.31iT - 23T^{2} \) |
| 29 | \( 1 + (-0.316 + 0.316i)T - 29iT^{2} \) |
| 31 | \( 1 + 4.24iT - 31T^{2} \) |
| 37 | \( 1 + (6.58 - 6.58i)T - 37iT^{2} \) |
| 41 | \( 1 + 41T^{2} \) |
| 43 | \( 1 + (-5.47 - 5.47i)T + 43iT^{2} \) |
| 47 | \( 1 - 10.5iT - 47T^{2} \) |
| 53 | \( 1 + (-3.63 - 3.63i)T + 53iT^{2} \) |
| 59 | \( 1 + (7.74 - 7.74i)T - 59iT^{2} \) |
| 61 | \( 1 + (-4 + 4i)T - 61iT^{2} \) |
| 67 | \( 1 + (4.69 + 4.69i)T + 67iT^{2} \) |
| 71 | \( 1 - 0.671T + 71T^{2} \) |
| 73 | \( 1 - 3.79T + 73T^{2} \) |
| 79 | \( 1 - 10.9T + 79T^{2} \) |
| 83 | \( 1 + (-11.9 - 11.9i)T + 83iT^{2} \) |
| 89 | \( 1 - 14.0T + 89T^{2} \) |
| 97 | \( 1 - 8.48iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.48487221266454715320843876303, −9.556358020454650531507958397927, −9.221523746296570055027980412377, −7.957108664103937307117943761351, −6.53429905413934967786480192266, −5.95115713206359878993024502752, −5.11161159052904802594091141464, −4.25490053697503511689815446507, −3.34511545692806006211156433979, −1.19140353993496779957767347475,
0.73882947308169173288339686632, 1.94260315382173235131816008347, 3.38651929316354210598924308379, 5.14100053863742282645504772952, 5.61578504518669907092463270300, 6.61138198535383901310627246771, 7.21892560064785974859828155381, 7.953729110881248414097938918486, 9.220017351223195023747983694452, 10.29324062909346193378940504547