L(s) = 1 | + (−2.15 + 2.15i)3-s + (0.707 − 0.707i)5-s − 0.223·7-s − 6.31i·9-s + (1.41 − 1.41i)11-s + (1.34 + 3.34i)13-s + 3.05i·15-s + 3·17-s + (4.46 + 4.46i)19-s + (0.483 − 0.483i)21-s − 6.31i·23-s + 4i·25-s + (7.15 + 7.15i)27-s + (0.316 − 0.316i)29-s − 4.24i·31-s + ⋯ |
L(s) = 1 | + (−1.24 + 1.24i)3-s + (0.316 − 0.316i)5-s − 0.0846·7-s − 2.10i·9-s + (0.426 − 0.426i)11-s + (0.373 + 0.927i)13-s + 0.788i·15-s + 0.727·17-s + (1.02 + 1.02i)19-s + (0.105 − 0.105i)21-s − 1.31i·23-s + 0.800i·25-s + (1.37 + 1.37i)27-s + (0.0587 − 0.0587i)29-s − 0.762i·31-s + ⋯ |
Λ(s)=(=(832s/2ΓC(s)L(s)(0.0103−0.999i)Λ(2−s)
Λ(s)=(=(832s/2ΓC(s+1/2)L(s)(0.0103−0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
832
= 26⋅13
|
Sign: |
0.0103−0.999i
|
Analytic conductor: |
6.64355 |
Root analytic conductor: |
2.57750 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ832(753,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 832, ( :1/2), 0.0103−0.999i)
|
Particular Values
L(1) |
≈ |
0.744734+0.737060i |
L(21) |
≈ |
0.744734+0.737060i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(−1.34−3.34i)T |
good | 3 | 1+(2.15−2.15i)T−3iT2 |
| 5 | 1+(−0.707+0.707i)T−5iT2 |
| 7 | 1+0.223T+7T2 |
| 11 | 1+(−1.41+1.41i)T−11iT2 |
| 17 | 1−3T+17T2 |
| 19 | 1+(−4.46−4.46i)T+19iT2 |
| 23 | 1+6.31iT−23T2 |
| 29 | 1+(−0.316+0.316i)T−29iT2 |
| 31 | 1+4.24iT−31T2 |
| 37 | 1+(6.58−6.58i)T−37iT2 |
| 41 | 1+41T2 |
| 43 | 1+(−5.47−5.47i)T+43iT2 |
| 47 | 1−10.5iT−47T2 |
| 53 | 1+(−3.63−3.63i)T+53iT2 |
| 59 | 1+(7.74−7.74i)T−59iT2 |
| 61 | 1+(−4+4i)T−61iT2 |
| 67 | 1+(4.69+4.69i)T+67iT2 |
| 71 | 1−0.671T+71T2 |
| 73 | 1−3.79T+73T2 |
| 79 | 1−10.9T+79T2 |
| 83 | 1+(−11.9−11.9i)T+83iT2 |
| 89 | 1−14.0T+89T2 |
| 97 | 1−8.48iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.48487221266454715320843876303, −9.556358020454650531507958397927, −9.221523746296570055027980412377, −7.957108664103937307117943761351, −6.53429905413934967786480192266, −5.95115713206359878993024502752, −5.11161159052904802594091141464, −4.25490053697503511689815446507, −3.34511545692806006211156433979, −1.19140353993496779957767347475,
0.73882947308169173288339686632, 1.94260315382173235131816008347, 3.38651929316354210598924308379, 5.14100053863742282645504772952, 5.61578504518669907092463270300, 6.61138198535383901310627246771, 7.21892560064785974859828155381, 7.953729110881248414097938918486, 9.220017351223195023747983694452, 10.29324062909346193378940504547