Properties

Label 832.2.p.a.753.2
Level $832$
Weight $2$
Character 832.753
Analytic conductor $6.644$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [832,2,Mod(337,832)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(832, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("832.337");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 832.p (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.64355344817\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.959512576.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 7x^{4} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 208)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 753.2
Root \(-0.819051 + 1.52616i\) of defining polynomial
Character \(\chi\) \(=\) 832.753
Dual form 832.2.p.a.337.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.15831 + 2.15831i) q^{3} +(0.707107 - 0.707107i) q^{5} -0.223888 q^{7} -6.31662i q^{9} +(1.41421 - 1.41421i) q^{11} +(1.34521 + 3.34521i) q^{13} +3.05231i q^{15} +3.00000 q^{17} +(4.46653 + 4.46653i) q^{19} +(0.483219 - 0.483219i) q^{21} -6.31662i q^{23} +4.00000i q^{25} +(7.15831 + 7.15831i) q^{27} +(0.316625 - 0.316625i) q^{29} -4.24264i q^{31} +6.10463i q^{33} +(-0.158312 + 0.158312i) q^{35} +(-6.58785 + 6.58785i) q^{37} +(-10.1234 - 4.31662i) q^{39} +(5.47494 + 5.47494i) q^{43} +(-4.46653 - 4.46653i) q^{45} +10.5712i q^{47} -6.94987 q^{49} +(-6.47494 + 6.47494i) q^{51} +(3.63325 + 3.63325i) q^{53} -2.00000i q^{55} -19.2803 q^{57} +(-7.74273 + 7.74273i) q^{59} +(4.00000 - 4.00000i) q^{61} +1.41421i q^{63} +(3.31662 + 1.41421i) q^{65} +(-4.69042 - 4.69042i) q^{67} +(13.6332 + 13.6332i) q^{69} +0.671663 q^{71} +3.79487 q^{73} +(-8.63325 - 8.63325i) q^{75} +(-0.316625 + 0.316625i) q^{77} +10.9499 q^{79} -11.9499 q^{81} +(11.9854 + 11.9854i) q^{83} +(2.12132 - 2.12132i) q^{85} +1.36675i q^{87} +14.0712 q^{89} +(-0.301175 - 0.748950i) q^{91} +(9.15694 + 9.15694i) q^{93} +6.31662 q^{95} +8.48528i q^{97} +(-8.93306 - 8.93306i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} - 8 q^{13} + 24 q^{17} + 44 q^{27} - 24 q^{29} + 12 q^{35} + 4 q^{43} + 24 q^{49} - 12 q^{51} - 24 q^{53} + 32 q^{61} + 56 q^{69} - 16 q^{75} + 24 q^{77} + 8 q^{79} - 16 q^{81} - 44 q^{91}+ \cdots + 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/832\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(703\) \(769\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.15831 + 2.15831i −1.24610 + 1.24610i −0.288675 + 0.957427i \(0.593215\pi\)
−0.957427 + 0.288675i \(0.906785\pi\)
\(4\) 0 0
\(5\) 0.707107 0.707107i 0.316228 0.316228i −0.531089 0.847316i \(-0.678217\pi\)
0.847316 + 0.531089i \(0.178217\pi\)
\(6\) 0 0
\(7\) −0.223888 −0.0846215 −0.0423108 0.999104i \(-0.513472\pi\)
−0.0423108 + 0.999104i \(0.513472\pi\)
\(8\) 0 0
\(9\) 6.31662i 2.10554i
\(10\) 0 0
\(11\) 1.41421 1.41421i 0.426401 0.426401i −0.460999 0.887401i \(-0.652509\pi\)
0.887401 + 0.460999i \(0.152509\pi\)
\(12\) 0 0
\(13\) 1.34521 + 3.34521i 0.373094 + 0.927794i
\(14\) 0 0
\(15\) 3.05231i 0.788104i
\(16\) 0 0
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 0 0
\(19\) 4.46653 + 4.46653i 1.02469 + 1.02469i 0.999687 + 0.0250045i \(0.00796001\pi\)
0.0250045 + 0.999687i \(0.492040\pi\)
\(20\) 0 0
\(21\) 0.483219 0.483219i 0.105447 0.105447i
\(22\) 0 0
\(23\) 6.31662i 1.31711i −0.752534 0.658554i \(-0.771169\pi\)
0.752534 0.658554i \(-0.228831\pi\)
\(24\) 0 0
\(25\) 4.00000i 0.800000i
\(26\) 0 0
\(27\) 7.15831 + 7.15831i 1.37762 + 1.37762i
\(28\) 0 0
\(29\) 0.316625 0.316625i 0.0587957 0.0587957i −0.677098 0.735893i \(-0.736762\pi\)
0.735893 + 0.677098i \(0.236762\pi\)
\(30\) 0 0
\(31\) 4.24264i 0.762001i −0.924575 0.381000i \(-0.875580\pi\)
0.924575 0.381000i \(-0.124420\pi\)
\(32\) 0 0
\(33\) 6.10463i 1.06268i
\(34\) 0 0
\(35\) −0.158312 + 0.158312i −0.0267597 + 0.0267597i
\(36\) 0 0
\(37\) −6.58785 + 6.58785i −1.08304 + 1.08304i −0.0868108 + 0.996225i \(0.527668\pi\)
−0.996225 + 0.0868108i \(0.972332\pi\)
\(38\) 0 0
\(39\) −10.1234 4.31662i −1.62104 0.691213i
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 5.47494 + 5.47494i 0.834920 + 0.834920i 0.988185 0.153265i \(-0.0489788\pi\)
−0.153265 + 0.988185i \(0.548979\pi\)
\(44\) 0 0
\(45\) −4.46653 4.46653i −0.665831 0.665831i
\(46\) 0 0
\(47\) 10.5712i 1.54196i 0.636858 + 0.770981i \(0.280234\pi\)
−0.636858 + 0.770981i \(0.719766\pi\)
\(48\) 0 0
\(49\) −6.94987 −0.992839
\(50\) 0 0
\(51\) −6.47494 + 6.47494i −0.906673 + 0.906673i
\(52\) 0 0
\(53\) 3.63325 + 3.63325i 0.499065 + 0.499065i 0.911147 0.412082i \(-0.135198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 2.00000i 0.269680i
\(56\) 0 0
\(57\) −19.2803 −2.55374
\(58\) 0 0
\(59\) −7.74273 + 7.74273i −1.00802 + 1.00802i −0.00805004 + 0.999968i \(0.502562\pi\)
−0.999968 + 0.00805004i \(0.997438\pi\)
\(60\) 0 0
\(61\) 4.00000 4.00000i 0.512148 0.512148i −0.403036 0.915184i \(-0.632045\pi\)
0.915184 + 0.403036i \(0.132045\pi\)
\(62\) 0 0
\(63\) 1.41421i 0.178174i
\(64\) 0 0
\(65\) 3.31662 + 1.41421i 0.411377 + 0.175412i
\(66\) 0 0
\(67\) −4.69042 4.69042i −0.573025 0.573025i 0.359947 0.932973i \(-0.382795\pi\)
−0.932973 + 0.359947i \(0.882795\pi\)
\(68\) 0 0
\(69\) 13.6332 + 13.6332i 1.64125 + 1.64125i
\(70\) 0 0
\(71\) 0.671663 0.0797117 0.0398558 0.999205i \(-0.487310\pi\)
0.0398558 + 0.999205i \(0.487310\pi\)
\(72\) 0 0
\(73\) 3.79487 0.444155 0.222078 0.975029i \(-0.428716\pi\)
0.222078 + 0.975029i \(0.428716\pi\)
\(74\) 0 0
\(75\) −8.63325 8.63325i −0.996882 0.996882i
\(76\) 0 0
\(77\) −0.316625 + 0.316625i −0.0360827 + 0.0360827i
\(78\) 0 0
\(79\) 10.9499 1.23196 0.615979 0.787763i \(-0.288761\pi\)
0.615979 + 0.787763i \(0.288761\pi\)
\(80\) 0 0
\(81\) −11.9499 −1.32776
\(82\) 0 0
\(83\) 11.9854 + 11.9854i 1.31557 + 1.31557i 0.917247 + 0.398318i \(0.130406\pi\)
0.398318 + 0.917247i \(0.369594\pi\)
\(84\) 0 0
\(85\) 2.12132 2.12132i 0.230089 0.230089i
\(86\) 0 0
\(87\) 1.36675i 0.146531i
\(88\) 0 0
\(89\) 14.0712 1.49155 0.745775 0.666198i \(-0.232080\pi\)
0.745775 + 0.666198i \(0.232080\pi\)
\(90\) 0 0
\(91\) −0.301175 0.748950i −0.0315717 0.0785113i
\(92\) 0 0
\(93\) 9.15694 + 9.15694i 0.949531 + 0.949531i
\(94\) 0 0
\(95\) 6.31662 0.648072
\(96\) 0 0
\(97\) 8.48528i 0.861550i 0.902459 + 0.430775i \(0.141760\pi\)
−0.902459 + 0.430775i \(0.858240\pi\)
\(98\) 0 0
\(99\) −8.93306 8.93306i −0.897806 0.897806i
\(100\) 0 0
\(101\) −6.31662 6.31662i −0.628528 0.628528i 0.319170 0.947698i \(-0.396596\pi\)
−0.947698 + 0.319170i \(0.896596\pi\)
\(102\) 0 0
\(103\) 0.949874i 0.0935939i −0.998904 0.0467970i \(-0.985099\pi\)
0.998904 0.0467970i \(-0.0149014\pi\)
\(104\) 0 0
\(105\) 0.683375i 0.0666906i
\(106\) 0 0
\(107\) −9.63325 9.63325i −0.931281 0.931281i 0.0665047 0.997786i \(-0.478815\pi\)
−0.997786 + 0.0665047i \(0.978815\pi\)
\(108\) 0 0
\(109\) −2.34521 2.34521i −0.224630 0.224630i 0.585815 0.810445i \(-0.300775\pi\)
−0.810445 + 0.585815i \(0.800775\pi\)
\(110\) 0 0
\(111\) 28.4373i 2.69915i
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) −4.46653 4.46653i −0.416506 0.416506i
\(116\) 0 0
\(117\) 21.1304 8.49717i 1.95351 0.785564i
\(118\) 0 0
\(119\) −0.671663 −0.0615712
\(120\) 0 0
\(121\) 7.00000i 0.636364i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 6.36396 + 6.36396i 0.569210 + 0.569210i
\(126\) 0 0
\(127\) −2.94987 −0.261759 −0.130880 0.991398i \(-0.541780\pi\)
−0.130880 + 0.991398i \(0.541780\pi\)
\(128\) 0 0
\(129\) −23.6332 −2.08079
\(130\) 0 0
\(131\) −2.84169 + 2.84169i −0.248279 + 0.248279i −0.820264 0.571985i \(-0.806174\pi\)
0.571985 + 0.820264i \(0.306174\pi\)
\(132\) 0 0
\(133\) −1.00000 1.00000i −0.0867110 0.0867110i
\(134\) 0 0
\(135\) 10.1234 0.871282
\(136\) 0 0
\(137\) 14.0712 1.20219 0.601094 0.799178i \(-0.294732\pi\)
0.601094 + 0.799178i \(0.294732\pi\)
\(138\) 0 0
\(139\) 2.47494 + 2.47494i 0.209921 + 0.209921i 0.804234 0.594313i \(-0.202576\pi\)
−0.594313 + 0.804234i \(0.702576\pi\)
\(140\) 0 0
\(141\) −22.8159 22.8159i −1.92144 1.92144i
\(142\) 0 0
\(143\) 6.63325 + 2.82843i 0.554700 + 0.236525i
\(144\) 0 0
\(145\) 0.447775i 0.0371857i
\(146\) 0 0
\(147\) 15.0000 15.0000i 1.23718 1.23718i
\(148\) 0 0
\(149\) 7.07107 7.07107i 0.579284 0.579284i −0.355422 0.934706i \(-0.615663\pi\)
0.934706 + 0.355422i \(0.115663\pi\)
\(150\) 0 0
\(151\) −4.46653 −0.363481 −0.181740 0.983347i \(-0.558173\pi\)
−0.181740 + 0.983347i \(0.558173\pi\)
\(152\) 0 0
\(153\) 18.9499i 1.53201i
\(154\) 0 0
\(155\) −3.00000 3.00000i −0.240966 0.240966i
\(156\) 0 0
\(157\) 7.94987 7.94987i 0.634469 0.634469i −0.314717 0.949186i \(-0.601909\pi\)
0.949186 + 0.314717i \(0.101909\pi\)
\(158\) 0 0
\(159\) −15.6834 −1.24377
\(160\) 0 0
\(161\) 1.41421i 0.111456i
\(162\) 0 0
\(163\) 8.70917 + 8.70917i 0.682155 + 0.682155i 0.960485 0.278331i \(-0.0897811\pi\)
−0.278331 + 0.960485i \(0.589781\pi\)
\(164\) 0 0
\(165\) 4.31662 + 4.31662i 0.336049 + 0.336049i
\(166\) 0 0
\(167\) 14.0712 1.08887 0.544433 0.838804i \(-0.316745\pi\)
0.544433 + 0.838804i \(0.316745\pi\)
\(168\) 0 0
\(169\) −9.38083 + 9.00000i −0.721602 + 0.692308i
\(170\) 0 0
\(171\) 28.2134 28.2134i 2.15753 2.15753i
\(172\) 0 0
\(173\) 15.3166 15.3166i 1.16450 1.16450i 0.181022 0.983479i \(-0.442059\pi\)
0.983479 0.181022i \(-0.0579407\pi\)
\(174\) 0 0
\(175\) 0.895550i 0.0676972i
\(176\) 0 0
\(177\) 33.4225i 2.51219i
\(178\) 0 0
\(179\) −6.79156 + 6.79156i −0.507625 + 0.507625i −0.913797 0.406172i \(-0.866864\pi\)
0.406172 + 0.913797i \(0.366864\pi\)
\(180\) 0 0
\(181\) −17.9499 17.9499i −1.33420 1.33420i −0.901570 0.432634i \(-0.857584\pi\)
−0.432634 0.901570i \(-0.642416\pi\)
\(182\) 0 0
\(183\) 17.2665i 1.27638i
\(184\) 0 0
\(185\) 9.31662i 0.684972i
\(186\) 0 0
\(187\) 4.24264 4.24264i 0.310253 0.310253i
\(188\) 0 0
\(189\) −1.60266 1.60266i −0.116576 0.116576i
\(190\) 0 0
\(191\) 18.0000 1.30243 0.651217 0.758891i \(-0.274259\pi\)
0.651217 + 0.758891i \(0.274259\pi\)
\(192\) 0 0
\(193\) 12.7279i 0.916176i 0.888907 + 0.458088i \(0.151466\pi\)
−0.888907 + 0.458088i \(0.848534\pi\)
\(194\) 0 0
\(195\) −10.2106 + 4.10600i −0.731198 + 0.294037i
\(196\) 0 0
\(197\) −2.86387 + 2.86387i −0.204042 + 0.204042i −0.801729 0.597687i \(-0.796087\pi\)
0.597687 + 0.801729i \(0.296087\pi\)
\(198\) 0 0
\(199\) 18.0000i 1.27599i −0.770042 0.637993i \(-0.779765\pi\)
0.770042 0.637993i \(-0.220235\pi\)
\(200\) 0 0
\(201\) 20.2468 1.42810
\(202\) 0 0
\(203\) −0.0708883 + 0.0708883i −0.00497539 + 0.00497539i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −39.8997 −2.77322
\(208\) 0 0
\(209\) 12.6332 0.873860
\(210\) 0 0
\(211\) −6.52506 + 6.52506i −0.449204 + 0.449204i −0.895090 0.445886i \(-0.852889\pi\)
0.445886 + 0.895090i \(0.352889\pi\)
\(212\) 0 0
\(213\) −1.44966 + 1.44966i −0.0993289 + 0.0993289i
\(214\) 0 0
\(215\) 7.74273 0.528050
\(216\) 0 0
\(217\) 0.949874i 0.0644817i
\(218\) 0 0
\(219\) −8.19051 + 8.19051i −0.553463 + 0.553463i
\(220\) 0 0
\(221\) 4.03562 + 10.0356i 0.271465 + 0.675069i
\(222\) 0 0
\(223\) 23.2282i 1.55547i 0.628589 + 0.777737i \(0.283633\pi\)
−0.628589 + 0.777737i \(0.716367\pi\)
\(224\) 0 0
\(225\) 25.2665 1.68443
\(226\) 0 0
\(227\) −1.41421 1.41421i −0.0938647 0.0938647i 0.658615 0.752480i \(-0.271143\pi\)
−0.752480 + 0.658615i \(0.771143\pi\)
\(228\) 0 0
\(229\) −1.67355 + 1.67355i −0.110591 + 0.110591i −0.760237 0.649646i \(-0.774917\pi\)
0.649646 + 0.760237i \(0.274917\pi\)
\(230\) 0 0
\(231\) 1.36675i 0.0899256i
\(232\) 0 0
\(233\) 22.5831i 1.47947i −0.672899 0.739735i \(-0.734951\pi\)
0.672899 0.739735i \(-0.265049\pi\)
\(234\) 0 0
\(235\) 7.47494 + 7.47494i 0.487611 + 0.487611i
\(236\) 0 0
\(237\) −23.6332 + 23.6332i −1.53514 + 1.53514i
\(238\) 0 0
\(239\) 11.9854i 0.775269i −0.921813 0.387635i \(-0.873292\pi\)
0.921813 0.387635i \(-0.126708\pi\)
\(240\) 0 0
\(241\) 12.7279i 0.819878i −0.912113 0.409939i \(-0.865550\pi\)
0.912113 0.409939i \(-0.134450\pi\)
\(242\) 0 0
\(243\) 4.31662 4.31662i 0.276912 0.276912i
\(244\) 0 0
\(245\) −4.91430 + 4.91430i −0.313963 + 0.313963i
\(246\) 0 0
\(247\) −8.93306 + 20.9499i −0.568397 + 1.33301i
\(248\) 0 0
\(249\) −51.7364 −3.27866
\(250\) 0 0
\(251\) −3.63325 3.63325i −0.229329 0.229329i 0.583084 0.812412i \(-0.301846\pi\)
−0.812412 + 0.583084i \(0.801846\pi\)
\(252\) 0 0
\(253\) −8.93306 8.93306i −0.561616 0.561616i
\(254\) 0 0
\(255\) 9.15694i 0.573430i
\(256\) 0 0
\(257\) 15.0000 0.935674 0.467837 0.883815i \(-0.345033\pi\)
0.467837 + 0.883815i \(0.345033\pi\)
\(258\) 0 0
\(259\) 1.47494 1.47494i 0.0916481 0.0916481i
\(260\) 0 0
\(261\) −2.00000 2.00000i −0.123797 0.123797i
\(262\) 0 0
\(263\) 0.633250i 0.0390478i 0.999809 + 0.0195239i \(0.00621505\pi\)
−0.999809 + 0.0195239i \(0.993785\pi\)
\(264\) 0 0
\(265\) 5.13819 0.315637
\(266\) 0 0
\(267\) −30.3701 + 30.3701i −1.85862 + 1.85862i
\(268\) 0 0
\(269\) −12.6332 + 12.6332i −0.770263 + 0.770263i −0.978152 0.207889i \(-0.933341\pi\)
0.207889 + 0.978152i \(0.433341\pi\)
\(270\) 0 0
\(271\) 23.2282i 1.41101i −0.708704 0.705506i \(-0.750720\pi\)
0.708704 0.705506i \(-0.249280\pi\)
\(272\) 0 0
\(273\) 2.26650 + 0.966438i 0.137175 + 0.0584915i
\(274\) 0 0
\(275\) 5.65685 + 5.65685i 0.341121 + 0.341121i
\(276\) 0 0
\(277\) −14.9499 14.9499i −0.898251 0.898251i 0.0970305 0.995281i \(-0.469066\pi\)
−0.995281 + 0.0970305i \(0.969066\pi\)
\(278\) 0 0
\(279\) −26.7992 −1.60442
\(280\) 0 0
\(281\) −12.7279 −0.759284 −0.379642 0.925133i \(-0.623953\pi\)
−0.379642 + 0.925133i \(0.623953\pi\)
\(282\) 0 0
\(283\) 11.0000 + 11.0000i 0.653882 + 0.653882i 0.953926 0.300043i \(-0.0970012\pi\)
−0.300043 + 0.953926i \(0.597001\pi\)
\(284\) 0 0
\(285\) −13.6332 + 13.6332i −0.807564 + 0.807564i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) −18.3139 18.3139i −1.07358 1.07358i
\(292\) 0 0
\(293\) −12.6925 + 12.6925i −0.741502 + 0.741502i −0.972867 0.231365i \(-0.925681\pi\)
0.231365 + 0.972867i \(0.425681\pi\)
\(294\) 0 0
\(295\) 10.9499i 0.637526i
\(296\) 0 0
\(297\) 20.2468 1.17484
\(298\) 0 0
\(299\) 21.1304 8.49717i 1.22200 0.491404i
\(300\) 0 0
\(301\) −1.22577 1.22577i −0.0706522 0.0706522i
\(302\) 0 0
\(303\) 27.2665 1.56642
\(304\) 0 0
\(305\) 5.65685i 0.323911i
\(306\) 0 0
\(307\) −12.5040 12.5040i −0.713643 0.713643i 0.253652 0.967295i \(-0.418368\pi\)
−0.967295 + 0.253652i \(0.918368\pi\)
\(308\) 0 0
\(309\) 2.05013 + 2.05013i 0.116628 + 0.116628i
\(310\) 0 0
\(311\) 18.3166i 1.03864i −0.854580 0.519320i \(-0.826185\pi\)
0.854580 0.519320i \(-0.173815\pi\)
\(312\) 0 0
\(313\) 9.94987i 0.562400i 0.959649 + 0.281200i \(0.0907325\pi\)
−0.959649 + 0.281200i \(0.909268\pi\)
\(314\) 0 0
\(315\) 1.00000 + 1.00000i 0.0563436 + 0.0563436i
\(316\) 0 0
\(317\) 15.4855 + 15.4855i 0.869750 + 0.869750i 0.992445 0.122694i \(-0.0391535\pi\)
−0.122694 + 0.992445i \(0.539153\pi\)
\(318\) 0 0
\(319\) 0.895550i 0.0501412i
\(320\) 0 0
\(321\) 41.5831 2.32094
\(322\) 0 0
\(323\) 13.3996 + 13.3996i 0.745573 + 0.745573i
\(324\) 0 0
\(325\) −13.3808 + 5.38083i −0.742235 + 0.298475i
\(326\) 0 0
\(327\) 10.1234 0.559824
\(328\) 0 0
\(329\) 2.36675i 0.130483i
\(330\) 0 0
\(331\) −5.36208 + 5.36208i −0.294726 + 0.294726i −0.838944 0.544218i \(-0.816827\pi\)
0.544218 + 0.838944i \(0.316827\pi\)
\(332\) 0 0
\(333\) 41.6130 + 41.6130i 2.28038 + 2.28038i
\(334\) 0 0
\(335\) −6.63325 −0.362413
\(336\) 0 0
\(337\) 5.94987 0.324110 0.162055 0.986782i \(-0.448188\pi\)
0.162055 + 0.986782i \(0.448188\pi\)
\(338\) 0 0
\(339\) 12.9499 12.9499i 0.703341 0.703341i
\(340\) 0 0
\(341\) −6.00000 6.00000i −0.324918 0.324918i
\(342\) 0 0
\(343\) 3.12320 0.168637
\(344\) 0 0
\(345\) 19.2803 1.03802
\(346\) 0 0
\(347\) 5.84169 + 5.84169i 0.313598 + 0.313598i 0.846302 0.532704i \(-0.178824\pi\)
−0.532704 + 0.846302i \(0.678824\pi\)
\(348\) 0 0
\(349\) −3.01687 3.01687i −0.161489 0.161489i 0.621737 0.783226i \(-0.286427\pi\)
−0.783226 + 0.621737i \(0.786427\pi\)
\(350\) 0 0
\(351\) −14.3166 + 33.5755i −0.764165 + 1.79213i
\(352\) 0 0
\(353\) 11.2428i 0.598395i −0.954191 0.299197i \(-0.903281\pi\)
0.954191 0.299197i \(-0.0967189\pi\)
\(354\) 0 0
\(355\) 0.474937 0.474937i 0.0252070 0.0252070i
\(356\) 0 0
\(357\) 1.44966 1.44966i 0.0767240 0.0767240i
\(358\) 0 0
\(359\) 12.7279 0.671754 0.335877 0.941906i \(-0.390967\pi\)
0.335877 + 0.941906i \(0.390967\pi\)
\(360\) 0 0
\(361\) 20.8997i 1.09999i
\(362\) 0 0
\(363\) −15.1082 15.1082i −0.792974 0.792974i
\(364\) 0 0
\(365\) 2.68338 2.68338i 0.140454 0.140454i
\(366\) 0 0
\(367\) −27.8997 −1.45636 −0.728178 0.685389i \(-0.759632\pi\)
−0.728178 + 0.685389i \(0.759632\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −0.813439 0.813439i −0.0422317 0.0422317i
\(372\) 0 0
\(373\) −2.94987 2.94987i −0.152739 0.152739i 0.626601 0.779340i \(-0.284445\pi\)
−0.779340 + 0.626601i \(0.784445\pi\)
\(374\) 0 0
\(375\) −27.4708 −1.41859
\(376\) 0 0
\(377\) 1.48510 + 0.633250i 0.0764866 + 0.0326140i
\(378\) 0 0
\(379\) 17.1945 17.1945i 0.883220 0.883220i −0.110641 0.993860i \(-0.535290\pi\)
0.993860 + 0.110641i \(0.0352903\pi\)
\(380\) 0 0
\(381\) 6.36675 6.36675i 0.326179 0.326179i
\(382\) 0 0
\(383\) 2.08588i 0.106583i 0.998579 + 0.0532916i \(0.0169713\pi\)
−0.998579 + 0.0532916i \(0.983029\pi\)
\(384\) 0 0
\(385\) 0.447775i 0.0228207i
\(386\) 0 0
\(387\) 34.5831 34.5831i 1.75796 1.75796i
\(388\) 0 0
\(389\) −3.31662 3.31662i −0.168160 0.168160i 0.618010 0.786170i \(-0.287939\pi\)
−0.786170 + 0.618010i \(0.787939\pi\)
\(390\) 0 0
\(391\) 18.9499i 0.958336i
\(392\) 0 0
\(393\) 12.2665i 0.618763i
\(394\) 0 0
\(395\) 7.74273 7.74273i 0.389579 0.389579i
\(396\) 0 0
\(397\) −27.6947 27.6947i −1.38996 1.38996i −0.825379 0.564579i \(-0.809038\pi\)
−0.564579 0.825379i \(-0.690962\pi\)
\(398\) 0 0
\(399\) 4.31662 0.216102
\(400\) 0 0
\(401\) 26.7283i 1.33475i 0.744723 + 0.667373i \(0.232581\pi\)
−0.744723 + 0.667373i \(0.767419\pi\)
\(402\) 0 0
\(403\) 14.1925 5.70723i 0.706980 0.284298i
\(404\) 0 0
\(405\) −8.44984 + 8.44984i −0.419876 + 0.419876i
\(406\) 0 0
\(407\) 18.6332i 0.923616i
\(408\) 0 0
\(409\) 30.5940 1.51278 0.756389 0.654122i \(-0.226962\pi\)
0.756389 + 0.654122i \(0.226962\pi\)
\(410\) 0 0
\(411\) −30.3701 + 30.3701i −1.49805 + 1.49805i
\(412\) 0 0
\(413\) 1.73350 1.73350i 0.0853000 0.0853000i
\(414\) 0 0
\(415\) 16.9499 0.832037
\(416\) 0 0
\(417\) −10.6834 −0.523167
\(418\) 0 0
\(419\) −5.84169 + 5.84169i −0.285385 + 0.285385i −0.835252 0.549867i \(-0.814678\pi\)
0.549867 + 0.835252i \(0.314678\pi\)
\(420\) 0 0
\(421\) −15.7448 + 15.7448i −0.767354 + 0.767354i −0.977640 0.210286i \(-0.932561\pi\)
0.210286 + 0.977640i \(0.432561\pi\)
\(422\) 0 0
\(423\) 66.7740 3.24666
\(424\) 0 0
\(425\) 12.0000i 0.582086i
\(426\) 0 0
\(427\) −0.895550 + 0.895550i −0.0433387 + 0.0433387i
\(428\) 0 0
\(429\) −20.4213 + 8.21200i −0.985947 + 0.396479i
\(430\) 0 0
\(431\) 6.32852i 0.304834i 0.988316 + 0.152417i \(0.0487057\pi\)
−0.988316 + 0.152417i \(0.951294\pi\)
\(432\) 0 0
\(433\) 10.0501 0.482978 0.241489 0.970404i \(-0.422364\pi\)
0.241489 + 0.970404i \(0.422364\pi\)
\(434\) 0 0
\(435\) 0.966438 + 0.966438i 0.0463372 + 0.0463372i
\(436\) 0 0
\(437\) 28.2134 28.2134i 1.34963 1.34963i
\(438\) 0 0
\(439\) 0.949874i 0.0453350i −0.999743 0.0226675i \(-0.992784\pi\)
0.999743 0.0226675i \(-0.00721591\pi\)
\(440\) 0 0
\(441\) 43.8997i 2.09046i
\(442\) 0 0
\(443\) −22.1082 22.1082i −1.05039 1.05039i −0.998661 0.0517306i \(-0.983526\pi\)
−0.0517306 0.998661i \(-0.516474\pi\)
\(444\) 0 0
\(445\) 9.94987 9.94987i 0.471669 0.471669i
\(446\) 0 0
\(447\) 30.5231i 1.44370i
\(448\) 0 0
\(449\) 4.31353i 0.203568i −0.994807 0.101784i \(-0.967545\pi\)
0.994807 0.101784i \(-0.0324551\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 9.64016 9.64016i 0.452934 0.452934i
\(454\) 0 0
\(455\) −0.742551 0.316625i −0.0348113 0.0148436i
\(456\) 0 0
\(457\) −14.5190 −0.679171 −0.339586 0.940575i \(-0.610287\pi\)
−0.339586 + 0.940575i \(0.610287\pi\)
\(458\) 0 0
\(459\) 21.4749 + 21.4749i 1.00236 + 1.00236i
\(460\) 0 0
\(461\) −4.27808 4.27808i −0.199250 0.199250i 0.600428 0.799679i \(-0.294997\pi\)
−0.799679 + 0.600428i \(0.794997\pi\)
\(462\) 0 0
\(463\) 12.7279i 0.591517i −0.955263 0.295758i \(-0.904428\pi\)
0.955263 0.295758i \(-0.0955723\pi\)
\(464\) 0 0
\(465\) 12.9499 0.600536
\(466\) 0 0
\(467\) 3.63325 3.63325i 0.168127 0.168127i −0.618029 0.786155i \(-0.712068\pi\)
0.786155 + 0.618029i \(0.212068\pi\)
\(468\) 0 0
\(469\) 1.05013 + 1.05013i 0.0484903 + 0.0484903i
\(470\) 0 0
\(471\) 34.3166i 1.58123i
\(472\) 0 0
\(473\) 15.4855 0.712022
\(474\) 0 0
\(475\) −17.8661 + 17.8661i −0.819753 + 0.819753i
\(476\) 0 0
\(477\) 22.9499 22.9499i 1.05080 1.05080i
\(478\) 0 0
\(479\) 16.2280i 0.741477i −0.928737 0.370738i \(-0.879105\pi\)
0.928737 0.370738i \(-0.120895\pi\)
\(480\) 0 0
\(481\) −30.8997 13.1757i −1.40891 0.600760i
\(482\) 0 0
\(483\) −3.05231 3.05231i −0.138885 0.138885i
\(484\) 0 0
\(485\) 6.00000 + 6.00000i 0.272446 + 0.272446i
\(486\) 0 0
\(487\) −29.2507 −1.32548 −0.662738 0.748851i \(-0.730606\pi\)
−0.662738 + 0.748851i \(0.730606\pi\)
\(488\) 0 0
\(489\) −37.5942 −1.70007
\(490\) 0 0
\(491\) −21.1583 21.1583i −0.954861 0.954861i 0.0441631 0.999024i \(-0.485938\pi\)
−0.999024 + 0.0441631i \(0.985938\pi\)
\(492\) 0 0
\(493\) 0.949874 0.949874i 0.0427802 0.0427802i
\(494\) 0 0
\(495\) −12.6332 −0.567822
\(496\) 0 0
\(497\) −0.150377 −0.00674533
\(498\) 0 0
\(499\) −17.4183 17.4183i −0.779752 0.779752i 0.200037 0.979788i \(-0.435894\pi\)
−0.979788 + 0.200037i \(0.935894\pi\)
\(500\) 0 0
\(501\) −30.3701 + 30.3701i −1.35684 + 1.35684i
\(502\) 0 0
\(503\) 10.4169i 0.464466i −0.972660 0.232233i \(-0.925397\pi\)
0.972660 0.232233i \(-0.0746031\pi\)
\(504\) 0 0
\(505\) −8.93306 −0.397516
\(506\) 0 0
\(507\) 0.821953 39.6716i 0.0365042 1.76188i
\(508\) 0 0
\(509\) 5.65685 + 5.65685i 0.250736 + 0.250736i 0.821272 0.570537i \(-0.193265\pi\)
−0.570537 + 0.821272i \(0.693265\pi\)
\(510\) 0 0
\(511\) −0.849623 −0.0375851
\(512\) 0 0
\(513\) 63.9456i 2.82327i
\(514\) 0 0
\(515\) −0.671663 0.671663i −0.0295970 0.0295970i
\(516\) 0 0
\(517\) 14.9499 + 14.9499i 0.657495 + 0.657495i
\(518\) 0 0
\(519\) 66.1161i 2.90218i
\(520\) 0 0
\(521\) 7.41688i 0.324939i 0.986714 + 0.162470i \(0.0519459\pi\)
−0.986714 + 0.162470i \(0.948054\pi\)
\(522\) 0 0
\(523\) −0.0501256 0.0501256i −0.00219184 0.00219184i 0.706010 0.708202i \(-0.250493\pi\)
−0.708202 + 0.706010i \(0.750493\pi\)
\(524\) 0 0
\(525\) 1.93288 + 1.93288i 0.0843577 + 0.0843577i
\(526\) 0 0
\(527\) 12.7279i 0.554437i
\(528\) 0 0
\(529\) −16.8997 −0.734772
\(530\) 0 0
\(531\) 48.9079 + 48.9079i 2.12242 + 2.12242i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −13.6235 −0.588994
\(536\) 0 0
\(537\) 29.3166i 1.26511i
\(538\) 0 0
\(539\) −9.82861 + 9.82861i −0.423348 + 0.423348i
\(540\) 0 0
\(541\) 14.6254 + 14.6254i 0.628793 + 0.628793i 0.947764 0.318971i \(-0.103337\pi\)
−0.318971 + 0.947764i \(0.603337\pi\)
\(542\) 0 0
\(543\) 77.4829 3.32511
\(544\) 0 0
\(545\) −3.31662 −0.142069
\(546\) 0 0
\(547\) −5.42481 + 5.42481i −0.231948 + 0.231948i −0.813505 0.581557i \(-0.802444\pi\)
0.581557 + 0.813505i \(0.302444\pi\)
\(548\) 0 0
\(549\) −25.2665 25.2665i −1.07835 1.07835i
\(550\) 0 0
\(551\) 2.82843 0.120495
\(552\) 0 0
\(553\) −2.45154 −0.104250
\(554\) 0 0
\(555\) −20.1082 20.1082i −0.853545 0.853545i
\(556\) 0 0
\(557\) −8.52073 8.52073i −0.361035 0.361035i 0.503159 0.864194i \(-0.332171\pi\)
−0.864194 + 0.503159i \(0.832171\pi\)
\(558\) 0 0
\(559\) −10.9499 + 25.6797i −0.463130 + 1.08614i
\(560\) 0 0
\(561\) 18.3139i 0.773213i
\(562\) 0 0
\(563\) 24.1583 24.1583i 1.01815 1.01815i 0.0183193 0.999832i \(-0.494168\pi\)
0.999832 0.0183193i \(-0.00583154\pi\)
\(564\) 0 0
\(565\) −4.24264 + 4.24264i −0.178489 + 0.178489i
\(566\) 0 0
\(567\) 2.67543 0.112357
\(568\) 0 0
\(569\) 21.6332i 0.906913i −0.891278 0.453457i \(-0.850191\pi\)
0.891278 0.453457i \(-0.149809\pi\)
\(570\) 0 0
\(571\) 21.4248 + 21.4248i 0.896600 + 0.896600i 0.995134 0.0985333i \(-0.0314151\pi\)
−0.0985333 + 0.995134i \(0.531415\pi\)
\(572\) 0 0
\(573\) −38.8496 + 38.8496i −1.62297 + 1.62297i
\(574\) 0 0
\(575\) 25.2665 1.05369
\(576\) 0 0
\(577\) 29.6985i 1.23636i −0.786035 0.618182i \(-0.787869\pi\)
0.786035 0.618182i \(-0.212131\pi\)
\(578\) 0 0
\(579\) −27.4708 27.4708i −1.14165 1.14165i
\(580\) 0 0
\(581\) −2.68338 2.68338i −0.111325 0.111325i
\(582\) 0 0
\(583\) 10.2764 0.425604
\(584\) 0 0
\(585\) 8.93306 20.9499i 0.369336 0.866171i
\(586\) 0 0
\(587\) −10.6420 + 10.6420i −0.439244 + 0.439244i −0.891758 0.452513i \(-0.850527\pi\)
0.452513 + 0.891758i \(0.350527\pi\)
\(588\) 0 0
\(589\) 18.9499 18.9499i 0.780816 0.780816i
\(590\) 0 0
\(591\) 12.3623i 0.508515i
\(592\) 0 0
\(593\) 4.31353i 0.177135i −0.996070 0.0885677i \(-0.971771\pi\)
0.996070 0.0885677i \(-0.0282290\pi\)
\(594\) 0 0
\(595\) −0.474937 + 0.474937i −0.0194705 + 0.0194705i
\(596\) 0 0
\(597\) 38.8496 + 38.8496i 1.59001 + 1.59001i
\(598\) 0 0
\(599\) 11.6834i 0.477370i 0.971097 + 0.238685i \(0.0767163\pi\)
−0.971097 + 0.238685i \(0.923284\pi\)
\(600\) 0 0
\(601\) 28.8997i 1.17885i 0.807825 + 0.589423i \(0.200645\pi\)
−0.807825 + 0.589423i \(0.799355\pi\)
\(602\) 0 0
\(603\) −29.6276 + 29.6276i −1.20653 + 1.20653i
\(604\) 0 0
\(605\) 4.94975 + 4.94975i 0.201236 + 0.201236i
\(606\) 0 0
\(607\) −32.9499 −1.33739 −0.668697 0.743535i \(-0.733148\pi\)
−0.668697 + 0.743535i \(0.733148\pi\)
\(608\) 0 0
\(609\) 0.305998i 0.0123997i
\(610\) 0 0
\(611\) −35.3627 + 14.2204i −1.43062 + 0.575296i
\(612\) 0 0
\(613\) 27.2469 27.2469i 1.10049 1.10049i 0.106143 0.994351i \(-0.466150\pi\)
0.994351 0.106143i \(-0.0338501\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.34333 0.0540802 0.0270401 0.999634i \(-0.491392\pi\)
0.0270401 + 0.999634i \(0.491392\pi\)
\(618\) 0 0
\(619\) 5.13819 5.13819i 0.206521 0.206521i −0.596266 0.802787i \(-0.703350\pi\)
0.802787 + 0.596266i \(0.203350\pi\)
\(620\) 0 0
\(621\) 45.2164 45.2164i 1.81447 1.81447i
\(622\) 0 0
\(623\) −3.15038 −0.126217
\(624\) 0 0
\(625\) −11.0000 −0.440000
\(626\) 0 0
\(627\) −27.2665 + 27.2665i −1.08892 + 1.08892i
\(628\) 0 0
\(629\) −19.7635 + 19.7635i −0.788024 + 0.788024i
\(630\) 0 0
\(631\) −5.80985 −0.231287 −0.115643 0.993291i \(-0.536893\pi\)
−0.115643 + 0.993291i \(0.536893\pi\)
\(632\) 0 0
\(633\) 28.1662i 1.11951i
\(634\) 0 0
\(635\) −2.08588 + 2.08588i −0.0827755 + 0.0827755i
\(636\) 0 0
\(637\) −9.34903 23.2488i −0.370422 0.921150i
\(638\) 0 0
\(639\) 4.24264i 0.167836i
\(640\) 0 0
\(641\) 12.0000 0.473972 0.236986 0.971513i \(-0.423841\pi\)
0.236986 + 0.971513i \(0.423841\pi\)
\(642\) 0 0
\(643\) −8.93306 8.93306i −0.352285 0.352285i 0.508674 0.860959i \(-0.330136\pi\)
−0.860959 + 0.508674i \(0.830136\pi\)
\(644\) 0 0
\(645\) −16.7112 + 16.7112i −0.658004 + 0.658004i
\(646\) 0 0
\(647\) 19.5831i 0.769892i 0.922939 + 0.384946i \(0.125780\pi\)
−0.922939 + 0.384946i \(0.874220\pi\)
\(648\) 0 0
\(649\) 21.8997i 0.859640i
\(650\) 0 0
\(651\) −2.05013 2.05013i −0.0803508 0.0803508i
\(652\) 0 0
\(653\) −13.5831 + 13.5831i −0.531549 + 0.531549i −0.921033 0.389484i \(-0.872653\pi\)
0.389484 + 0.921033i \(0.372653\pi\)
\(654\) 0 0
\(655\) 4.01875i 0.157026i
\(656\) 0 0
\(657\) 23.9707i 0.935188i
\(658\) 0 0
\(659\) 8.68338 8.68338i 0.338256 0.338256i −0.517454 0.855711i \(-0.673120\pi\)
0.855711 + 0.517454i \(0.173120\pi\)
\(660\) 0 0
\(661\) 17.4183 17.4183i 0.677495 0.677495i −0.281938 0.959433i \(-0.590977\pi\)
0.959433 + 0.281938i \(0.0909772\pi\)
\(662\) 0 0
\(663\) −30.3701 12.9499i −1.17948 0.502931i
\(664\) 0 0
\(665\) −1.41421 −0.0548408
\(666\) 0 0
\(667\) −2.00000 2.00000i −0.0774403 0.0774403i
\(668\) 0 0
\(669\) −50.1337 50.1337i −1.93828 1.93828i
\(670\) 0 0
\(671\) 11.3137i 0.436761i
\(672\) 0 0
\(673\) 18.8997 0.728532 0.364266 0.931295i \(-0.381320\pi\)
0.364266 + 0.931295i \(0.381320\pi\)
\(674\) 0 0
\(675\) −28.6332 + 28.6332i −1.10209 + 1.10209i
\(676\) 0 0
\(677\) 8.68338 + 8.68338i 0.333729 + 0.333729i 0.854001 0.520272i \(-0.174169\pi\)
−0.520272 + 0.854001i \(0.674169\pi\)
\(678\) 0 0
\(679\) 1.89975i 0.0729057i
\(680\) 0 0
\(681\) 6.10463 0.233930
\(682\) 0 0
\(683\) 10.5712 10.5712i 0.404494 0.404494i −0.475319 0.879813i \(-0.657667\pi\)
0.879813 + 0.475319i \(0.157667\pi\)
\(684\) 0 0
\(685\) 9.94987 9.94987i 0.380165 0.380165i
\(686\) 0 0
\(687\) 7.22407i 0.275615i
\(688\) 0 0
\(689\) −7.26650 + 17.0415i −0.276832 + 0.649228i
\(690\) 0 0
\(691\) −3.34709 3.34709i −0.127329 0.127329i 0.640570 0.767900i \(-0.278698\pi\)
−0.767900 + 0.640570i \(0.778698\pi\)
\(692\) 0 0
\(693\) 2.00000 + 2.00000i 0.0759737 + 0.0759737i
\(694\) 0 0
\(695\) 3.50009 0.132766
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 48.7414 + 48.7414i 1.84357 + 1.84357i
\(700\) 0 0
\(701\) 11.2164 11.2164i 0.423637 0.423637i −0.462817 0.886454i \(-0.653161\pi\)
0.886454 + 0.462817i \(0.153161\pi\)
\(702\) 0 0
\(703\) −58.8496 −2.21956
\(704\) 0 0
\(705\) −32.2665 −1.21523
\(706\) 0 0
\(707\) 1.41421 + 1.41421i 0.0531870 + 0.0531870i
\(708\) 0 0
\(709\) 3.34709 3.34709i 0.125703 0.125703i −0.641457 0.767159i \(-0.721670\pi\)
0.767159 + 0.641457i \(0.221670\pi\)
\(710\) 0 0
\(711\) 69.1662i 2.59394i
\(712\) 0 0
\(713\) −26.7992 −1.00364
\(714\) 0 0
\(715\) 6.69042 2.69042i 0.250207 0.100616i
\(716\) 0 0
\(717\) 25.8682 + 25.8682i 0.966065 + 0.966065i
\(718\) 0 0
\(719\) 6.00000 0.223762 0.111881 0.993722i \(-0.464312\pi\)
0.111881 + 0.993722i \(0.464312\pi\)
\(720\) 0 0
\(721\) 0.212665i 0.00792006i
\(722\) 0 0
\(723\) 27.4708 + 27.4708i 1.02165 + 1.02165i
\(724\) 0 0
\(725\) 1.26650 + 1.26650i 0.0470366 + 0.0470366i
\(726\) 0 0
\(727\) 37.8997i 1.40562i −0.711376 0.702812i \(-0.751928\pi\)
0.711376 0.702812i \(-0.248072\pi\)
\(728\) 0 0
\(729\) 17.2164i 0.637643i
\(730\) 0 0
\(731\) 16.4248 + 16.4248i 0.607494 + 0.607494i
\(732\) 0 0
\(733\) 6.81174 + 6.81174i 0.251597 + 0.251597i 0.821625 0.570028i \(-0.193068\pi\)
−0.570028 + 0.821625i \(0.693068\pi\)
\(734\) 0 0
\(735\) 21.2132i 0.782461i
\(736\) 0 0
\(737\) −13.2665 −0.488678
\(738\) 0 0
\(739\) −18.7617 18.7617i −0.690159 0.690159i 0.272108 0.962267i \(-0.412279\pi\)
−0.962267 + 0.272108i \(0.912279\pi\)
\(740\) 0 0
\(741\) −25.9360 64.4967i −0.952784 2.36935i
\(742\) 0 0
\(743\) −12.0563 −0.442301 −0.221151 0.975240i \(-0.570981\pi\)
−0.221151 + 0.975240i \(0.570981\pi\)
\(744\) 0 0
\(745\) 10.0000i 0.366372i
\(746\) 0 0
\(747\) 75.7071 75.7071i 2.76998 2.76998i
\(748\) 0 0
\(749\) 2.15676 + 2.15676i 0.0788065 + 0.0788065i
\(750\) 0 0
\(751\) −15.8997 −0.580190 −0.290095 0.956998i \(-0.593687\pi\)
−0.290095 + 0.956998i \(0.593687\pi\)
\(752\) 0 0
\(753\) 15.6834 0.571534
\(754\) 0 0
\(755\) −3.15831 + 3.15831i −0.114943 + 0.114943i
\(756\) 0 0
\(757\) 20.8997 + 20.8997i 0.759614 + 0.759614i 0.976252 0.216638i \(-0.0695091\pi\)
−0.216638 + 0.976252i \(0.569509\pi\)
\(758\) 0 0
\(759\) 38.5607 1.39966
\(760\) 0 0
\(761\) 12.7279 0.461387 0.230693 0.973026i \(-0.425901\pi\)
0.230693 + 0.973026i \(0.425901\pi\)
\(762\) 0 0
\(763\) 0.525063 + 0.525063i 0.0190086 + 0.0190086i
\(764\) 0 0
\(765\) −13.3996 13.3996i −0.484463 0.484463i
\(766\) 0 0
\(767\) −36.3166 15.4855i −1.31132 0.559148i
\(768\) 0 0
\(769\) 25.4558i 0.917961i −0.888446 0.458981i \(-0.848215\pi\)
0.888446 0.458981i \(-0.151785\pi\)
\(770\) 0 0
\(771\) −32.3747 + 32.3747i −1.16595 + 1.16595i
\(772\) 0 0
\(773\) 23.2636 23.2636i 0.836735 0.836735i −0.151693 0.988428i \(-0.548472\pi\)
0.988428 + 0.151693i \(0.0484725\pi\)
\(774\) 0 0
\(775\) 16.9706 0.609601
\(776\) 0 0
\(777\) 6.36675i 0.228406i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0.949874 0.949874i 0.0339892 0.0339892i
\(782\) 0 0
\(783\) 4.53300 0.161996
\(784\) 0 0
\(785\) 11.2428i 0.401273i
\(786\) 0 0
\(787\) 25.0081 + 25.0081i 0.891441 + 0.891441i 0.994659 0.103217i \(-0.0329137\pi\)
−0.103217 + 0.994659i \(0.532914\pi\)
\(788\) 0 0
\(789\) −1.36675 1.36675i −0.0486576 0.0486576i
\(790\) 0 0
\(791\) 1.34333 0.0477631
\(792\) 0 0
\(793\) 18.7617 + 8.00000i 0.666246 + 0.284088i
\(794\) 0 0
\(795\) −11.0898 + 11.0898i −0.393315 + 0.393315i
\(796\) 0 0
\(797\) −34.5831 + 34.5831i −1.22500 + 1.22500i −0.259164 + 0.965833i \(0.583447\pi\)
−0.965833 + 0.259164i \(0.916553\pi\)
\(798\) 0 0
\(799\) 31.7135i 1.12194i
\(800\) 0 0
\(801\) 88.8828i 3.14052i
\(802\) 0 0
\(803\) 5.36675 5.36675i 0.189389 0.189389i
\(804\) 0 0
\(805\) 1.00000 + 1.00000i 0.0352454 + 0.0352454i
\(806\) 0 0
\(807\) 54.5330i 1.91965i
\(808\) 0 0
\(809\) 22.5831i 0.793980i −0.917823 0.396990i \(-0.870055\pi\)
0.917823 0.396990i \(-0.129945\pi\)
\(810\) 0 0
\(811\) 27.6947 27.6947i 0.972493 0.972493i −0.0271385 0.999632i \(-0.508640\pi\)
0.999632 + 0.0271385i \(0.00863953\pi\)
\(812\) 0 0
\(813\) 50.1337 + 50.1337i 1.75827 + 1.75827i
\(814\) 0 0
\(815\) 12.3166 0.431433
\(816\) 0 0
\(817\) 48.9079i 1.71107i
\(818\) 0 0
\(819\) −4.73084 + 1.90241i −0.165309 + 0.0664756i
\(820\) 0 0
\(821\) 17.6777 17.6777i 0.616955 0.616955i −0.327794 0.944749i \(-0.606305\pi\)
0.944749 + 0.327794i \(0.106305\pi\)
\(822\) 0 0
\(823\) 18.9499i 0.660551i −0.943885 0.330276i \(-0.892858\pi\)
0.943885 0.330276i \(-0.107142\pi\)
\(824\) 0 0
\(825\) −24.4185 −0.850144
\(826\) 0 0
\(827\) −3.50009 + 3.50009i −0.121710 + 0.121710i −0.765338 0.643628i \(-0.777428\pi\)
0.643628 + 0.765338i \(0.277428\pi\)
\(828\) 0 0
\(829\) −8.00000 + 8.00000i −0.277851 + 0.277851i −0.832251 0.554399i \(-0.812948\pi\)
0.554399 + 0.832251i \(0.312948\pi\)
\(830\) 0 0
\(831\) 64.5330 2.23862
\(832\) 0 0
\(833\) −20.8496 −0.722397
\(834\) 0 0
\(835\) 9.94987 9.94987i 0.344330 0.344330i
\(836\) 0 0
\(837\) 30.3701 30.3701i 1.04975 1.04975i
\(838\) 0 0
\(839\) −15.4146 −0.532170 −0.266085 0.963950i \(-0.585730\pi\)
−0.266085 + 0.963950i \(0.585730\pi\)
\(840\) 0 0
\(841\) 28.7995i 0.993086i
\(842\) 0 0
\(843\) 27.4708 27.4708i 0.946146 0.946146i
\(844\) 0 0
\(845\) −0.269289 + 12.9972i −0.00926381 + 0.447118i
\(846\) 0 0
\(847\) 1.56721i 0.0538501i
\(848\) 0 0
\(849\) −47.4829 −1.62961
\(850\) 0 0
\(851\) 41.6130 + 41.6130i 1.42647 + 1.42647i
\(852\) 0 0
\(853\) −19.9874 + 19.9874i −0.684357 + 0.684357i −0.960979 0.276622i \(-0.910785\pi\)
0.276622 + 0.960979i \(0.410785\pi\)
\(854\) 0 0
\(855\) 39.8997i 1.36454i
\(856\) 0 0
\(857\) 36.6332i 1.25137i −0.780077 0.625684i \(-0.784820\pi\)
0.780077 0.625684i \(-0.215180\pi\)
\(858\) 0 0
\(859\) −25.9499 25.9499i −0.885398 0.885398i 0.108679 0.994077i \(-0.465338\pi\)
−0.994077 + 0.108679i \(0.965338\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 20.4707i 0.696829i −0.937341 0.348415i \(-0.886720\pi\)
0.937341 0.348415i \(-0.113280\pi\)
\(864\) 0 0
\(865\) 21.6610i 0.736495i
\(866\) 0 0
\(867\) 17.2665 17.2665i 0.586401 0.586401i
\(868\) 0 0
\(869\) 15.4855 15.4855i 0.525308 0.525308i
\(870\) 0 0
\(871\) 9.38083 22.0000i 0.317857 0.745442i
\(872\) 0 0
\(873\) 53.5983 1.81403
\(874\) 0 0
\(875\) −1.42481 1.42481i −0.0481674 0.0481674i
\(876\) 0 0
\(877\) −1.67355 1.67355i −0.0565116 0.0565116i 0.678286 0.734798i \(-0.262723\pi\)
−0.734798 + 0.678286i \(0.762723\pi\)
\(878\) 0 0
\(879\) 54.7887i 1.84798i
\(880\) 0 0
\(881\) 21.0000 0.707508 0.353754 0.935339i \(-0.384905\pi\)
0.353754 + 0.935339i \(0.384905\pi\)
\(882\) 0 0
\(883\) −1.47494 + 1.47494i −0.0496356 + 0.0496356i −0.731489 0.681853i \(-0.761174\pi\)
0.681853 + 0.731489i \(0.261174\pi\)
\(884\) 0 0
\(885\) −23.6332 23.6332i −0.794423 0.794423i
\(886\) 0 0
\(887\) 39.1662i 1.31507i −0.753422 0.657537i \(-0.771598\pi\)
0.753422 0.657537i \(-0.228402\pi\)
\(888\) 0 0
\(889\) 0.660440 0.0221505
\(890\) 0 0
\(891\) −16.8997 + 16.8997i −0.566160 + 0.566160i
\(892\) 0 0
\(893\) −47.2164 + 47.2164i −1.58004 + 1.58004i
\(894\) 0 0
\(895\) 9.60472i 0.321050i
\(896\) 0 0
\(897\) −27.2665 + 63.9456i −0.910402 + 2.13508i
\(898\) 0 0
\(899\) −1.34333 1.34333i −0.0448024 0.0448024i
\(900\) 0 0
\(901\) 10.8997 + 10.8997i 0.363123 + 0.363123i
\(902\) 0 0
\(903\) 5.29119 0.176080
\(904\) 0 0
\(905\) −25.3850 −0.843824
\(906\) 0 0
\(907\) 25.3747 + 25.3747i 0.842553 + 0.842553i 0.989190 0.146638i \(-0.0468451\pi\)
−0.146638 + 0.989190i \(0.546845\pi\)
\(908\) 0 0
\(909\) −39.8997 + 39.8997i −1.32339 + 1.32339i
\(910\) 0 0
\(911\) 30.0000 0.993944 0.496972 0.867766i \(-0.334445\pi\)
0.496972 + 0.867766i \(0.334445\pi\)
\(912\) 0 0
\(913\) 33.8997 1.12192
\(914\) 0 0
\(915\) 12.2093 + 12.2093i 0.403626 + 0.403626i
\(916\) 0 0
\(917\) 0.636218 0.636218i 0.0210098 0.0210098i
\(918\) 0 0
\(919\) 36.0000i 1.18753i 0.804638 + 0.593765i \(0.202359\pi\)
−0.804638 + 0.593765i \(0.797641\pi\)
\(920\) 0 0
\(921\) 53.9752 1.77854
\(922\) 0 0
\(923\) 0.903526 + 2.24685i 0.0297399 + 0.0739560i
\(924\) 0 0
\(925\) −26.3514 26.3514i −0.866429 0.866429i
\(926\) 0 0
\(927\) −6.00000 −0.197066
\(928\) 0 0
\(929\) 25.3141i 0.830528i −0.909701 0.415264i \(-0.863689\pi\)
0.909701 0.415264i \(-0.136311\pi\)
\(930\) 0 0
\(931\) −31.0418 31.0418i −1.01735 1.01735i
\(932\) 0 0
\(933\) 39.5330 + 39.5330i 1.29425 + 1.29425i
\(934\) 0 0
\(935\) 6.00000i 0.196221i
\(936\) 0 0
\(937\) 16.1003i 0.525972i −0.964800 0.262986i \(-0.915293\pi\)
0.964800 0.262986i \(-0.0847074\pi\)
\(938\) 0 0
\(939\) −21.4749 21.4749i −0.700808 0.700808i
\(940\) 0 0
\(941\) −16.1217 16.1217i −0.525552 0.525552i 0.393691 0.919243i \(-0.371198\pi\)
−0.919243 + 0.393691i \(0.871198\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −2.26650 −0.0737292
\(946\) 0 0
\(947\) −40.9413 40.9413i −1.33041 1.33041i −0.904998 0.425415i \(-0.860128\pi\)
−0.425415 0.904998i \(-0.639872\pi\)
\(948\) 0 0
\(949\) 5.10488 + 12.6946i 0.165712 + 0.412085i
\(950\) 0 0
\(951\) −66.8449 −2.16760
\(952\) 0 0
\(953\) 49.4327i 1.60128i −0.599143 0.800642i \(-0.704492\pi\)
0.599143 0.800642i \(-0.295508\pi\)
\(954\) 0 0
\(955\) 12.7279 12.7279i 0.411866 0.411866i
\(956\) 0 0
\(957\) 1.93288 + 1.93288i 0.0624810 + 0.0624810i
\(958\) 0 0
\(959\) −3.15038 −0.101731
\(960\) 0 0
\(961\) 13.0000 0.419355
\(962\) 0 0
\(963\) −60.8496 + 60.8496i −1.96085 + 1.96085i
\(964\) 0 0
\(965\) 9.00000 + 9.00000i 0.289720 + 0.289720i
\(966\) 0 0
\(967\) −7.36584 −0.236870 −0.118435 0.992962i \(-0.537788\pi\)
−0.118435 + 0.992962i \(0.537788\pi\)
\(968\) 0 0
\(969\) −57.8410 −1.85812
\(970\) 0 0
\(971\) 15.7916 + 15.7916i 0.506775 + 0.506775i 0.913535 0.406760i \(-0.133341\pi\)
−0.406760 + 0.913535i \(0.633341\pi\)
\(972\) 0 0
\(973\) −0.554108 0.554108i −0.0177639 0.0177639i
\(974\) 0 0
\(975\) 17.2665 40.4935i 0.552971 1.29683i
\(976\) 0 0
\(977\) 9.97038i 0.318981i 0.987199 + 0.159490i \(0.0509851\pi\)
−0.987199 + 0.159490i \(0.949015\pi\)
\(978\) 0 0
\(979\) 19.8997 19.8997i 0.635999 0.635999i
\(980\) 0 0
\(981\) −14.8138 + 14.8138i −0.472968 + 0.472968i
\(982\) 0 0
\(983\) 51.5834 1.64525 0.822627 0.568582i \(-0.192508\pi\)
0.822627 + 0.568582i \(0.192508\pi\)
\(984\) 0 0
\(985\) 4.05013i 0.129048i
\(986\) 0 0
\(987\) 5.10819 + 5.10819i 0.162595 + 0.162595i
\(988\) 0 0
\(989\) 34.5831 34.5831i 1.09968 1.09968i
\(990\) 0 0
\(991\) −20.9499 −0.665495 −0.332747 0.943016i \(-0.607976\pi\)
−0.332747 + 0.943016i \(0.607976\pi\)
\(992\) 0 0
\(993\) 23.1461i 0.734519i
\(994\) 0 0
\(995\) −12.7279 12.7279i −0.403502 0.403502i
\(996\) 0 0
\(997\) 40.9499 + 40.9499i 1.29690 + 1.29690i 0.930433 + 0.366463i \(0.119431\pi\)
0.366463 + 0.930433i \(0.380569\pi\)
\(998\) 0 0
\(999\) −94.3158 −2.98402
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 832.2.p.a.753.2 8
4.3 odd 2 208.2.p.a.181.4 yes 8
13.12 even 2 inner 832.2.p.a.753.1 8
16.3 odd 4 208.2.p.a.77.4 yes 8
16.13 even 4 inner 832.2.p.a.337.1 8
52.51 odd 2 208.2.p.a.181.2 yes 8
208.51 odd 4 208.2.p.a.77.2 8
208.77 even 4 inner 832.2.p.a.337.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
208.2.p.a.77.2 8 208.51 odd 4
208.2.p.a.77.4 yes 8 16.3 odd 4
208.2.p.a.181.2 yes 8 52.51 odd 2
208.2.p.a.181.4 yes 8 4.3 odd 2
832.2.p.a.337.1 8 16.13 even 4 inner
832.2.p.a.337.2 8 208.77 even 4 inner
832.2.p.a.753.1 8 13.12 even 2 inner
832.2.p.a.753.2 8 1.1 even 1 trivial