Properties

Label 208.2.p.a.181.4
Level $208$
Weight $2$
Character 208.181
Analytic conductor $1.661$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [208,2,Mod(77,208)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(208, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("208.77");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 208.p (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.66088836204\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.959512576.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 7x^{4} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 181.4
Root \(0.819051 - 1.52616i\) of defining polynomial
Character \(\chi\) \(=\) 208.181
Dual form 208.2.p.a.77.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{2} +(2.15831 - 2.15831i) q^{3} -2.00000 q^{4} +(0.707107 - 0.707107i) q^{5} +(3.05231 + 3.05231i) q^{6} +0.223888 q^{7} -2.82843i q^{8} -6.31662i q^{9} +(1.00000 + 1.00000i) q^{10} +(-1.41421 + 1.41421i) q^{11} +(-4.31662 + 4.31662i) q^{12} +(1.34521 + 3.34521i) q^{13} +0.316625i q^{14} -3.05231i q^{15} +4.00000 q^{16} +3.00000 q^{17} +8.93306 q^{18} +(-4.46653 - 4.46653i) q^{19} +(-1.41421 + 1.41421i) q^{20} +(0.483219 - 0.483219i) q^{21} +(-2.00000 - 2.00000i) q^{22} +6.31662i q^{23} +(-6.10463 - 6.10463i) q^{24} +4.00000i q^{25} +(-4.73084 + 1.90241i) q^{26} +(-7.15831 - 7.15831i) q^{27} -0.447775 q^{28} +(0.316625 - 0.316625i) q^{29} +4.31662 q^{30} +4.24264i q^{31} +5.65685i q^{32} +6.10463i q^{33} +4.24264i q^{34} +(0.158312 - 0.158312i) q^{35} +12.6332i q^{36} +(-6.58785 + 6.58785i) q^{37} +(6.31662 - 6.31662i) q^{38} +(10.1234 + 4.31662i) q^{39} +(-2.00000 - 2.00000i) q^{40} +(0.683375 + 0.683375i) q^{42} +(-5.47494 - 5.47494i) q^{43} +(2.82843 - 2.82843i) q^{44} +(-4.46653 - 4.46653i) q^{45} -8.93306 q^{46} -10.5712i q^{47} +(8.63325 - 8.63325i) q^{48} -6.94987 q^{49} -5.65685 q^{50} +(6.47494 - 6.47494i) q^{51} +(-2.69042 - 6.69042i) q^{52} +(3.63325 + 3.63325i) q^{53} +(10.1234 - 10.1234i) q^{54} +2.00000i q^{55} -0.633250i q^{56} -19.2803 q^{57} +(0.447775 + 0.447775i) q^{58} +(7.74273 - 7.74273i) q^{59} +6.10463i q^{60} +(4.00000 - 4.00000i) q^{61} -6.00000 q^{62} -1.41421i q^{63} -8.00000 q^{64} +(3.31662 + 1.41421i) q^{65} -8.63325 q^{66} +(4.69042 + 4.69042i) q^{67} -6.00000 q^{68} +(13.6332 + 13.6332i) q^{69} +(0.223888 + 0.223888i) q^{70} -0.671663 q^{71} -17.8661 q^{72} +3.79487 q^{73} +(-9.31662 - 9.31662i) q^{74} +(8.63325 + 8.63325i) q^{75} +(8.93306 + 8.93306i) q^{76} +(-0.316625 + 0.316625i) q^{77} +(-6.10463 + 14.3166i) q^{78} -10.9499 q^{79} +(2.82843 - 2.82843i) q^{80} -11.9499 q^{81} +(-11.9854 - 11.9854i) q^{83} +(-0.966438 + 0.966438i) q^{84} +(2.12132 - 2.12132i) q^{85} +(7.74273 - 7.74273i) q^{86} -1.36675i q^{87} +(4.00000 + 4.00000i) q^{88} +14.0712 q^{89} +(6.31662 - 6.31662i) q^{90} +(0.301175 + 0.748950i) q^{91} -12.6332i q^{92} +(9.15694 + 9.15694i) q^{93} +14.9499 q^{94} -6.31662 q^{95} +(12.2093 + 12.2093i) q^{96} +8.48528i q^{97} -9.82861i q^{98} +(8.93306 + 8.93306i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} - 16 q^{4} + 8 q^{10} - 8 q^{12} - 8 q^{13} + 32 q^{16} + 24 q^{17} - 16 q^{22} - 44 q^{27} - 24 q^{29} + 8 q^{30} - 12 q^{35} + 24 q^{38} - 16 q^{40} + 32 q^{42} - 4 q^{43} + 16 q^{48} + 24 q^{49}+ \cdots - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/208\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 1.00000i
\(3\) 2.15831 2.15831i 1.24610 1.24610i 0.288675 0.957427i \(-0.406785\pi\)
0.957427 0.288675i \(-0.0932147\pi\)
\(4\) −2.00000 −1.00000
\(5\) 0.707107 0.707107i 0.316228 0.316228i −0.531089 0.847316i \(-0.678217\pi\)
0.847316 + 0.531089i \(0.178217\pi\)
\(6\) 3.05231 + 3.05231i 1.24610 + 1.24610i
\(7\) 0.223888 0.0846215 0.0423108 0.999104i \(-0.486528\pi\)
0.0423108 + 0.999104i \(0.486528\pi\)
\(8\) 2.82843i 1.00000i
\(9\) 6.31662i 2.10554i
\(10\) 1.00000 + 1.00000i 0.316228 + 0.316228i
\(11\) −1.41421 + 1.41421i −0.426401 + 0.426401i −0.887401 0.460999i \(-0.847491\pi\)
0.460999 + 0.887401i \(0.347491\pi\)
\(12\) −4.31662 + 4.31662i −1.24610 + 1.24610i
\(13\) 1.34521 + 3.34521i 0.373094 + 0.927794i
\(14\) 0.316625i 0.0846215i
\(15\) 3.05231i 0.788104i
\(16\) 4.00000 1.00000
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 8.93306 2.10554
\(19\) −4.46653 4.46653i −1.02469 1.02469i −0.999687 0.0250045i \(-0.992040\pi\)
−0.0250045 0.999687i \(-0.507960\pi\)
\(20\) −1.41421 + 1.41421i −0.316228 + 0.316228i
\(21\) 0.483219 0.483219i 0.105447 0.105447i
\(22\) −2.00000 2.00000i −0.426401 0.426401i
\(23\) 6.31662i 1.31711i 0.752534 + 0.658554i \(0.228831\pi\)
−0.752534 + 0.658554i \(0.771169\pi\)
\(24\) −6.10463 6.10463i −1.24610 1.24610i
\(25\) 4.00000i 0.800000i
\(26\) −4.73084 + 1.90241i −0.927794 + 0.373094i
\(27\) −7.15831 7.15831i −1.37762 1.37762i
\(28\) −0.447775 −0.0846215
\(29\) 0.316625 0.316625i 0.0587957 0.0587957i −0.677098 0.735893i \(-0.736762\pi\)
0.735893 + 0.677098i \(0.236762\pi\)
\(30\) 4.31662 0.788104
\(31\) 4.24264i 0.762001i 0.924575 + 0.381000i \(0.124420\pi\)
−0.924575 + 0.381000i \(0.875580\pi\)
\(32\) 5.65685i 1.00000i
\(33\) 6.10463i 1.06268i
\(34\) 4.24264i 0.727607i
\(35\) 0.158312 0.158312i 0.0267597 0.0267597i
\(36\) 12.6332i 2.10554i
\(37\) −6.58785 + 6.58785i −1.08304 + 1.08304i −0.0868108 + 0.996225i \(0.527668\pi\)
−0.996225 + 0.0868108i \(0.972332\pi\)
\(38\) 6.31662 6.31662i 1.02469 1.02469i
\(39\) 10.1234 + 4.31662i 1.62104 + 0.691213i
\(40\) −2.00000 2.00000i −0.316228 0.316228i
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0.683375 + 0.683375i 0.105447 + 0.105447i
\(43\) −5.47494 5.47494i −0.834920 0.834920i 0.153265 0.988185i \(-0.451021\pi\)
−0.988185 + 0.153265i \(0.951021\pi\)
\(44\) 2.82843 2.82843i 0.426401 0.426401i
\(45\) −4.46653 4.46653i −0.665831 0.665831i
\(46\) −8.93306 −1.31711
\(47\) 10.5712i 1.54196i −0.636858 0.770981i \(-0.719766\pi\)
0.636858 0.770981i \(-0.280234\pi\)
\(48\) 8.63325 8.63325i 1.24610 1.24610i
\(49\) −6.94987 −0.992839
\(50\) −5.65685 −0.800000
\(51\) 6.47494 6.47494i 0.906673 0.906673i
\(52\) −2.69042 6.69042i −0.373094 0.927794i
\(53\) 3.63325 + 3.63325i 0.499065 + 0.499065i 0.911147 0.412082i \(-0.135198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 10.1234 10.1234i 1.37762 1.37762i
\(55\) 2.00000i 0.269680i
\(56\) 0.633250i 0.0846215i
\(57\) −19.2803 −2.55374
\(58\) 0.447775 + 0.447775i 0.0587957 + 0.0587957i
\(59\) 7.74273 7.74273i 1.00802 1.00802i 0.00805004 0.999968i \(-0.497438\pi\)
0.999968 0.00805004i \(-0.00256244\pi\)
\(60\) 6.10463i 0.788104i
\(61\) 4.00000 4.00000i 0.512148 0.512148i −0.403036 0.915184i \(-0.632045\pi\)
0.915184 + 0.403036i \(0.132045\pi\)
\(62\) −6.00000 −0.762001
\(63\) 1.41421i 0.178174i
\(64\) −8.00000 −1.00000
\(65\) 3.31662 + 1.41421i 0.411377 + 0.175412i
\(66\) −8.63325 −1.06268
\(67\) 4.69042 + 4.69042i 0.573025 + 0.573025i 0.932973 0.359947i \(-0.117205\pi\)
−0.359947 + 0.932973i \(0.617205\pi\)
\(68\) −6.00000 −0.727607
\(69\) 13.6332 + 13.6332i 1.64125 + 1.64125i
\(70\) 0.223888 + 0.223888i 0.0267597 + 0.0267597i
\(71\) −0.671663 −0.0797117 −0.0398558 0.999205i \(-0.512690\pi\)
−0.0398558 + 0.999205i \(0.512690\pi\)
\(72\) −17.8661 −2.10554
\(73\) 3.79487 0.444155 0.222078 0.975029i \(-0.428716\pi\)
0.222078 + 0.975029i \(0.428716\pi\)
\(74\) −9.31662 9.31662i −1.08304 1.08304i
\(75\) 8.63325 + 8.63325i 0.996882 + 0.996882i
\(76\) 8.93306 + 8.93306i 1.02469 + 1.02469i
\(77\) −0.316625 + 0.316625i −0.0360827 + 0.0360827i
\(78\) −6.10463 + 14.3166i −0.691213 + 1.62104i
\(79\) −10.9499 −1.23196 −0.615979 0.787763i \(-0.711239\pi\)
−0.615979 + 0.787763i \(0.711239\pi\)
\(80\) 2.82843 2.82843i 0.316228 0.316228i
\(81\) −11.9499 −1.32776
\(82\) 0 0
\(83\) −11.9854 11.9854i −1.31557 1.31557i −0.917247 0.398318i \(-0.869594\pi\)
−0.398318 0.917247i \(-0.630406\pi\)
\(84\) −0.966438 + 0.966438i −0.105447 + 0.105447i
\(85\) 2.12132 2.12132i 0.230089 0.230089i
\(86\) 7.74273 7.74273i 0.834920 0.834920i
\(87\) 1.36675i 0.146531i
\(88\) 4.00000 + 4.00000i 0.426401 + 0.426401i
\(89\) 14.0712 1.49155 0.745775 0.666198i \(-0.232080\pi\)
0.745775 + 0.666198i \(0.232080\pi\)
\(90\) 6.31662 6.31662i 0.665831 0.665831i
\(91\) 0.301175 + 0.748950i 0.0315717 + 0.0785113i
\(92\) 12.6332i 1.31711i
\(93\) 9.15694 + 9.15694i 0.949531 + 0.949531i
\(94\) 14.9499 1.54196
\(95\) −6.31662 −0.648072
\(96\) 12.2093 + 12.2093i 1.24610 + 1.24610i
\(97\) 8.48528i 0.861550i 0.902459 + 0.430775i \(0.141760\pi\)
−0.902459 + 0.430775i \(0.858240\pi\)
\(98\) 9.82861i 0.992839i
\(99\) 8.93306 + 8.93306i 0.897806 + 0.897806i
\(100\) 8.00000i 0.800000i
\(101\) −6.31662 6.31662i −0.628528 0.628528i 0.319170 0.947698i \(-0.396596\pi\)
−0.947698 + 0.319170i \(0.896596\pi\)
\(102\) 9.15694 + 9.15694i 0.906673 + 0.906673i
\(103\) 0.949874i 0.0935939i 0.998904 + 0.0467970i \(0.0149014\pi\)
−0.998904 + 0.0467970i \(0.985099\pi\)
\(104\) 9.46168 3.80482i 0.927794 0.373094i
\(105\) 0.683375i 0.0666906i
\(106\) −5.13819 + 5.13819i −0.499065 + 0.499065i
\(107\) 9.63325 + 9.63325i 0.931281 + 0.931281i 0.997786 0.0665047i \(-0.0211847\pi\)
−0.0665047 + 0.997786i \(0.521185\pi\)
\(108\) 14.3166 + 14.3166i 1.37762 + 1.37762i
\(109\) −2.34521 2.34521i −0.224630 0.224630i 0.585815 0.810445i \(-0.300775\pi\)
−0.810445 + 0.585815i \(0.800775\pi\)
\(110\) −2.82843 −0.269680
\(111\) 28.4373i 2.69915i
\(112\) 0.895550 0.0846215
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 27.2665i 2.55374i
\(115\) 4.46653 + 4.46653i 0.416506 + 0.416506i
\(116\) −0.633250 + 0.633250i −0.0587957 + 0.0587957i
\(117\) 21.1304 8.49717i 1.95351 0.785564i
\(118\) 10.9499 + 10.9499i 1.00802 + 1.00802i
\(119\) 0.671663 0.0615712
\(120\) −8.63325 −0.788104
\(121\) 7.00000i 0.636364i
\(122\) 5.65685 + 5.65685i 0.512148 + 0.512148i
\(123\) 0 0
\(124\) 8.48528i 0.762001i
\(125\) 6.36396 + 6.36396i 0.569210 + 0.569210i
\(126\) 2.00000 0.178174
\(127\) 2.94987 0.261759 0.130880 0.991398i \(-0.458220\pi\)
0.130880 + 0.991398i \(0.458220\pi\)
\(128\) 11.3137i 1.00000i
\(129\) −23.6332 −2.08079
\(130\) −2.00000 + 4.69042i −0.175412 + 0.411377i
\(131\) 2.84169 2.84169i 0.248279 0.248279i −0.571985 0.820264i \(-0.693826\pi\)
0.820264 + 0.571985i \(0.193826\pi\)
\(132\) 12.2093i 1.06268i
\(133\) −1.00000 1.00000i −0.0867110 0.0867110i
\(134\) −6.63325 + 6.63325i −0.573025 + 0.573025i
\(135\) −10.1234 −0.871282
\(136\) 8.48528i 0.727607i
\(137\) 14.0712 1.20219 0.601094 0.799178i \(-0.294732\pi\)
0.601094 + 0.799178i \(0.294732\pi\)
\(138\) −19.2803 + 19.2803i −1.64125 + 1.64125i
\(139\) −2.47494 2.47494i −0.209921 0.209921i 0.594313 0.804234i \(-0.297424\pi\)
−0.804234 + 0.594313i \(0.797424\pi\)
\(140\) −0.316625 + 0.316625i −0.0267597 + 0.0267597i
\(141\) −22.8159 22.8159i −1.92144 1.92144i
\(142\) 0.949874i 0.0797117i
\(143\) −6.63325 2.82843i −0.554700 0.236525i
\(144\) 25.2665i 2.10554i
\(145\) 0.447775i 0.0371857i
\(146\) 5.36675i 0.444155i
\(147\) −15.0000 + 15.0000i −1.23718 + 1.23718i
\(148\) 13.1757 13.1757i 1.08304 1.08304i
\(149\) 7.07107 7.07107i 0.579284 0.579284i −0.355422 0.934706i \(-0.615663\pi\)
0.934706 + 0.355422i \(0.115663\pi\)
\(150\) −12.2093 + 12.2093i −0.996882 + 0.996882i
\(151\) 4.46653 0.363481 0.181740 0.983347i \(-0.441827\pi\)
0.181740 + 0.983347i \(0.441827\pi\)
\(152\) −12.6332 + 12.6332i −1.02469 + 1.02469i
\(153\) 18.9499i 1.53201i
\(154\) −0.447775 0.447775i −0.0360827 0.0360827i
\(155\) 3.00000 + 3.00000i 0.240966 + 0.240966i
\(156\) −20.2468 8.63325i −1.62104 0.691213i
\(157\) 7.94987 7.94987i 0.634469 0.634469i −0.314717 0.949186i \(-0.601909\pi\)
0.949186 + 0.314717i \(0.101909\pi\)
\(158\) 15.4855i 1.23196i
\(159\) 15.6834 1.24377
\(160\) 4.00000 + 4.00000i 0.316228 + 0.316228i
\(161\) 1.41421i 0.111456i
\(162\) 16.8997i 1.32776i
\(163\) −8.70917 8.70917i −0.682155 0.682155i 0.278331 0.960485i \(-0.410219\pi\)
−0.960485 + 0.278331i \(0.910219\pi\)
\(164\) 0 0
\(165\) 4.31662 + 4.31662i 0.336049 + 0.336049i
\(166\) 16.9499 16.9499i 1.31557 1.31557i
\(167\) −14.0712 −1.08887 −0.544433 0.838804i \(-0.683255\pi\)
−0.544433 + 0.838804i \(0.683255\pi\)
\(168\) −1.36675 1.36675i −0.105447 0.105447i
\(169\) −9.38083 + 9.00000i −0.721602 + 0.692308i
\(170\) 3.00000 + 3.00000i 0.230089 + 0.230089i
\(171\) −28.2134 + 28.2134i −2.15753 + 2.15753i
\(172\) 10.9499 + 10.9499i 0.834920 + 0.834920i
\(173\) 15.3166 15.3166i 1.16450 1.16450i 0.181022 0.983479i \(-0.442059\pi\)
0.983479 0.181022i \(-0.0579407\pi\)
\(174\) 1.93288 0.146531
\(175\) 0.895550i 0.0676972i
\(176\) −5.65685 + 5.65685i −0.426401 + 0.426401i
\(177\) 33.4225i 2.51219i
\(178\) 19.8997i 1.49155i
\(179\) 6.79156 6.79156i 0.507625 0.507625i −0.406172 0.913797i \(-0.633136\pi\)
0.913797 + 0.406172i \(0.133136\pi\)
\(180\) 8.93306 + 8.93306i 0.665831 + 0.665831i
\(181\) −17.9499 17.9499i −1.33420 1.33420i −0.901570 0.432634i \(-0.857584\pi\)
−0.432634 0.901570i \(-0.642416\pi\)
\(182\) −1.05918 + 0.425926i −0.0785113 + 0.0315717i
\(183\) 17.2665i 1.27638i
\(184\) 17.8661 1.31711
\(185\) 9.31662i 0.684972i
\(186\) −12.9499 + 12.9499i −0.949531 + 0.949531i
\(187\) −4.24264 + 4.24264i −0.310253 + 0.310253i
\(188\) 21.1423i 1.54196i
\(189\) −1.60266 1.60266i −0.116576 0.116576i
\(190\) 8.93306i 0.648072i
\(191\) −18.0000 −1.30243 −0.651217 0.758891i \(-0.725741\pi\)
−0.651217 + 0.758891i \(0.725741\pi\)
\(192\) −17.2665 + 17.2665i −1.24610 + 1.24610i
\(193\) 12.7279i 0.916176i 0.888907 + 0.458088i \(0.151466\pi\)
−0.888907 + 0.458088i \(0.848534\pi\)
\(194\) −12.0000 −0.861550
\(195\) 10.2106 4.10600i 0.731198 0.294037i
\(196\) 13.8997 0.992839
\(197\) −2.86387 + 2.86387i −0.204042 + 0.204042i −0.801729 0.597687i \(-0.796087\pi\)
0.597687 + 0.801729i \(0.296087\pi\)
\(198\) −12.6332 + 12.6332i −0.897806 + 0.897806i
\(199\) 18.0000i 1.27599i 0.770042 + 0.637993i \(0.220235\pi\)
−0.770042 + 0.637993i \(0.779765\pi\)
\(200\) 11.3137 0.800000
\(201\) 20.2468 1.42810
\(202\) 8.93306 8.93306i 0.628528 0.628528i
\(203\) 0.0708883 0.0708883i 0.00497539 0.00497539i
\(204\) −12.9499 + 12.9499i −0.906673 + 0.906673i
\(205\) 0 0
\(206\) −1.34333 −0.0935939
\(207\) 39.8997 2.77322
\(208\) 5.38083 + 13.3808i 0.373094 + 0.927794i
\(209\) 12.6332 0.873860
\(210\) 0.966438 0.0666906
\(211\) 6.52506 6.52506i 0.449204 0.449204i −0.445886 0.895090i \(-0.647111\pi\)
0.895090 + 0.445886i \(0.147111\pi\)
\(212\) −7.26650 7.26650i −0.499065 0.499065i
\(213\) −1.44966 + 1.44966i −0.0993289 + 0.0993289i
\(214\) −13.6235 + 13.6235i −0.931281 + 0.931281i
\(215\) −7.74273 −0.528050
\(216\) −20.2468 + 20.2468i −1.37762 + 1.37762i
\(217\) 0.949874i 0.0644817i
\(218\) 3.31662 3.31662i 0.224630 0.224630i
\(219\) 8.19051 8.19051i 0.553463 0.553463i
\(220\) 4.00000i 0.269680i
\(221\) 4.03562 + 10.0356i 0.271465 + 0.675069i
\(222\) −40.2164 −2.69915
\(223\) 23.2282i 1.55547i −0.628589 0.777737i \(-0.716367\pi\)
0.628589 0.777737i \(-0.283633\pi\)
\(224\) 1.26650i 0.0846215i
\(225\) 25.2665 1.68443
\(226\) 8.48528i 0.564433i
\(227\) 1.41421 + 1.41421i 0.0938647 + 0.0938647i 0.752480 0.658615i \(-0.228857\pi\)
−0.658615 + 0.752480i \(0.728857\pi\)
\(228\) 38.5607 2.55374
\(229\) −1.67355 + 1.67355i −0.110591 + 0.110591i −0.760237 0.649646i \(-0.774917\pi\)
0.649646 + 0.760237i \(0.274917\pi\)
\(230\) −6.31662 + 6.31662i −0.416506 + 0.416506i
\(231\) 1.36675i 0.0899256i
\(232\) −0.895550 0.895550i −0.0587957 0.0587957i
\(233\) 22.5831i 1.47947i −0.672899 0.739735i \(-0.734951\pi\)
0.672899 0.739735i \(-0.265049\pi\)
\(234\) 12.0168 + 29.8829i 0.785564 + 1.95351i
\(235\) −7.47494 7.47494i −0.487611 0.487611i
\(236\) −15.4855 + 15.4855i −1.00802 + 1.00802i
\(237\) −23.6332 + 23.6332i −1.53514 + 1.53514i
\(238\) 0.949874i 0.0615712i
\(239\) 11.9854i 0.775269i 0.921813 + 0.387635i \(0.126708\pi\)
−0.921813 + 0.387635i \(0.873292\pi\)
\(240\) 12.2093i 0.788104i
\(241\) 12.7279i 0.819878i −0.912113 0.409939i \(-0.865550\pi\)
0.912113 0.409939i \(-0.134450\pi\)
\(242\) −9.89949 −0.636364
\(243\) −4.31662 + 4.31662i −0.276912 + 0.276912i
\(244\) −8.00000 + 8.00000i −0.512148 + 0.512148i
\(245\) −4.91430 + 4.91430i −0.313963 + 0.313963i
\(246\) 0 0
\(247\) 8.93306 20.9499i 0.568397 1.33301i
\(248\) 12.0000 0.762001
\(249\) −51.7364 −3.27866
\(250\) −9.00000 + 9.00000i −0.569210 + 0.569210i
\(251\) 3.63325 + 3.63325i 0.229329 + 0.229329i 0.812412 0.583084i \(-0.198154\pi\)
−0.583084 + 0.812412i \(0.698154\pi\)
\(252\) 2.82843i 0.178174i
\(253\) −8.93306 8.93306i −0.561616 0.561616i
\(254\) 4.17175i 0.261759i
\(255\) 9.15694i 0.573430i
\(256\) 16.0000 1.00000
\(257\) 15.0000 0.935674 0.467837 0.883815i \(-0.345033\pi\)
0.467837 + 0.883815i \(0.345033\pi\)
\(258\) 33.4225i 2.08079i
\(259\) −1.47494 + 1.47494i −0.0916481 + 0.0916481i
\(260\) −6.63325 2.82843i −0.411377 0.175412i
\(261\) −2.00000 2.00000i −0.123797 0.123797i
\(262\) 4.01875 + 4.01875i 0.248279 + 0.248279i
\(263\) 0.633250i 0.0390478i −0.999809 0.0195239i \(-0.993785\pi\)
0.999809 0.0195239i \(-0.00621505\pi\)
\(264\) 17.2665 1.06268
\(265\) 5.13819 0.315637
\(266\) 1.41421 1.41421i 0.0867110 0.0867110i
\(267\) 30.3701 30.3701i 1.85862 1.85862i
\(268\) −9.38083 9.38083i −0.573025 0.573025i
\(269\) −12.6332 + 12.6332i −0.770263 + 0.770263i −0.978152 0.207889i \(-0.933341\pi\)
0.207889 + 0.978152i \(0.433341\pi\)
\(270\) 14.3166i 0.871282i
\(271\) 23.2282i 1.41101i 0.708704 + 0.705506i \(0.249280\pi\)
−0.708704 + 0.705506i \(0.750720\pi\)
\(272\) 12.0000 0.727607
\(273\) 2.26650 + 0.966438i 0.137175 + 0.0584915i
\(274\) 19.8997i 1.20219i
\(275\) −5.65685 5.65685i −0.341121 0.341121i
\(276\) −27.2665 27.2665i −1.64125 1.64125i
\(277\) −14.9499 14.9499i −0.898251 0.898251i 0.0970305 0.995281i \(-0.469066\pi\)
−0.995281 + 0.0970305i \(0.969066\pi\)
\(278\) 3.50009 3.50009i 0.209921 0.209921i
\(279\) 26.7992 1.60442
\(280\) −0.447775 0.447775i −0.0267597 0.0267597i
\(281\) −12.7279 −0.759284 −0.379642 0.925133i \(-0.623953\pi\)
−0.379642 + 0.925133i \(0.623953\pi\)
\(282\) 32.2665 32.2665i 1.92144 1.92144i
\(283\) −11.0000 11.0000i −0.653882 0.653882i 0.300043 0.953926i \(-0.402999\pi\)
−0.953926 + 0.300043i \(0.902999\pi\)
\(284\) 1.34333 0.0797117
\(285\) −13.6332 + 13.6332i −0.807564 + 0.807564i
\(286\) 4.00000 9.38083i 0.236525 0.554700i
\(287\) 0 0
\(288\) 35.7322 2.10554
\(289\) −8.00000 −0.470588
\(290\) 0.633250 0.0371857
\(291\) 18.3139 + 18.3139i 1.07358 + 1.07358i
\(292\) −7.58973 −0.444155
\(293\) −12.6925 + 12.6925i −0.741502 + 0.741502i −0.972867 0.231365i \(-0.925681\pi\)
0.231365 + 0.972867i \(0.425681\pi\)
\(294\) −21.2132 21.2132i −1.23718 1.23718i
\(295\) 10.9499i 0.637526i
\(296\) 18.6332 + 18.6332i 1.08304 + 1.08304i
\(297\) 20.2468 1.17484
\(298\) 10.0000 + 10.0000i 0.579284 + 0.579284i
\(299\) −21.1304 + 8.49717i −1.22200 + 0.491404i
\(300\) −17.2665 17.2665i −0.996882 0.996882i
\(301\) −1.22577 1.22577i −0.0706522 0.0706522i
\(302\) 6.31662i 0.363481i
\(303\) −27.2665 −1.56642
\(304\) −17.8661 17.8661i −1.02469 1.02469i
\(305\) 5.65685i 0.323911i
\(306\) 26.7992 1.53201
\(307\) 12.5040 + 12.5040i 0.713643 + 0.713643i 0.967295 0.253652i \(-0.0816320\pi\)
−0.253652 + 0.967295i \(0.581632\pi\)
\(308\) 0.633250 0.633250i 0.0360827 0.0360827i
\(309\) 2.05013 + 2.05013i 0.116628 + 0.116628i
\(310\) −4.24264 + 4.24264i −0.240966 + 0.240966i
\(311\) 18.3166i 1.03864i 0.854580 + 0.519320i \(0.173815\pi\)
−0.854580 + 0.519320i \(0.826185\pi\)
\(312\) 12.2093 28.6332i 0.691213 1.62104i
\(313\) 9.94987i 0.562400i 0.959649 + 0.281200i \(0.0907325\pi\)
−0.959649 + 0.281200i \(0.909268\pi\)
\(314\) 11.2428 + 11.2428i 0.634469 + 0.634469i
\(315\) −1.00000 1.00000i −0.0563436 0.0563436i
\(316\) 21.8997 1.23196
\(317\) 15.4855 + 15.4855i 0.869750 + 0.869750i 0.992445 0.122694i \(-0.0391535\pi\)
−0.122694 + 0.992445i \(0.539153\pi\)
\(318\) 22.1796i 1.24377i
\(319\) 0.895550i 0.0501412i
\(320\) −5.65685 + 5.65685i −0.316228 + 0.316228i
\(321\) 41.5831 2.32094
\(322\) −2.00000 −0.111456
\(323\) −13.3996 13.3996i −0.745573 0.745573i
\(324\) 23.8997 1.32776
\(325\) −13.3808 + 5.38083i −0.742235 + 0.298475i
\(326\) 12.3166 12.3166i 0.682155 0.682155i
\(327\) −10.1234 −0.559824
\(328\) 0 0
\(329\) 2.36675i 0.130483i
\(330\) −6.10463 + 6.10463i −0.336049 + 0.336049i
\(331\) 5.36208 5.36208i 0.294726 0.294726i −0.544218 0.838944i \(-0.683173\pi\)
0.838944 + 0.544218i \(0.183173\pi\)
\(332\) 23.9707 + 23.9707i 1.31557 + 1.31557i
\(333\) 41.6130 + 41.6130i 2.28038 + 2.28038i
\(334\) 19.8997i 1.08887i
\(335\) 6.63325 0.362413
\(336\) 1.93288 1.93288i 0.105447 0.105447i
\(337\) 5.94987 0.324110 0.162055 0.986782i \(-0.448188\pi\)
0.162055 + 0.986782i \(0.448188\pi\)
\(338\) −12.7279 13.2665i −0.692308 0.721602i
\(339\) −12.9499 + 12.9499i −0.703341 + 0.703341i
\(340\) −4.24264 + 4.24264i −0.230089 + 0.230089i
\(341\) −6.00000 6.00000i −0.324918 0.324918i
\(342\) −39.8997 39.8997i −2.15753 2.15753i
\(343\) −3.12320 −0.168637
\(344\) −15.4855 + 15.4855i −0.834920 + 0.834920i
\(345\) 19.2803 1.03802
\(346\) 21.6610 + 21.6610i 1.16450 + 1.16450i
\(347\) −5.84169 5.84169i −0.313598 0.313598i 0.532704 0.846302i \(-0.321176\pi\)
−0.846302 + 0.532704i \(0.821176\pi\)
\(348\) 2.73350i 0.146531i
\(349\) −3.01687 3.01687i −0.161489 0.161489i 0.621737 0.783226i \(-0.286427\pi\)
−0.783226 + 0.621737i \(0.786427\pi\)
\(350\) −1.26650 −0.0676972
\(351\) 14.3166 33.5755i 0.764165 1.79213i
\(352\) −8.00000 8.00000i −0.426401 0.426401i
\(353\) 11.2428i 0.598395i −0.954191 0.299197i \(-0.903281\pi\)
0.954191 0.299197i \(-0.0967189\pi\)
\(354\) 47.2665 2.51219
\(355\) −0.474937 + 0.474937i −0.0252070 + 0.0252070i
\(356\) −28.1425 −1.49155
\(357\) 1.44966 1.44966i 0.0767240 0.0767240i
\(358\) 9.60472 + 9.60472i 0.507625 + 0.507625i
\(359\) −12.7279 −0.671754 −0.335877 0.941906i \(-0.609033\pi\)
−0.335877 + 0.941906i \(0.609033\pi\)
\(360\) −12.6332 + 12.6332i −0.665831 + 0.665831i
\(361\) 20.8997i 1.09999i
\(362\) 25.3850 25.3850i 1.33420 1.33420i
\(363\) 15.1082 + 15.1082i 0.792974 + 0.792974i
\(364\) −0.602351 1.49790i −0.0315717 0.0785113i
\(365\) 2.68338 2.68338i 0.140454 0.140454i
\(366\) 24.4185 1.27638
\(367\) 27.8997 1.45636 0.728178 0.685389i \(-0.240368\pi\)
0.728178 + 0.685389i \(0.240368\pi\)
\(368\) 25.2665i 1.31711i
\(369\) 0 0
\(370\) −13.1757 −0.684972
\(371\) 0.813439 + 0.813439i 0.0422317 + 0.0422317i
\(372\) −18.3139 18.3139i −0.949531 0.949531i
\(373\) −2.94987 2.94987i −0.152739 0.152739i 0.626601 0.779340i \(-0.284445\pi\)
−0.779340 + 0.626601i \(0.784445\pi\)
\(374\) −6.00000 6.00000i −0.310253 0.310253i
\(375\) 27.4708 1.41859
\(376\) −29.8997 −1.54196
\(377\) 1.48510 + 0.633250i 0.0764866 + 0.0326140i
\(378\) 2.26650 2.26650i 0.116576 0.116576i
\(379\) −17.1945 + 17.1945i −0.883220 + 0.883220i −0.993860 0.110641i \(-0.964710\pi\)
0.110641 + 0.993860i \(0.464710\pi\)
\(380\) 12.6332 0.648072
\(381\) 6.36675 6.36675i 0.326179 0.326179i
\(382\) 25.4558i 1.30243i
\(383\) 2.08588i 0.106583i −0.998579 0.0532916i \(-0.983029\pi\)
0.998579 0.0532916i \(-0.0169713\pi\)
\(384\) −24.4185 24.4185i −1.24610 1.24610i
\(385\) 0.447775i 0.0228207i
\(386\) −18.0000 −0.916176
\(387\) −34.5831 + 34.5831i −1.75796 + 1.75796i
\(388\) 16.9706i 0.861550i
\(389\) −3.31662 3.31662i −0.168160 0.168160i 0.618010 0.786170i \(-0.287939\pi\)
−0.786170 + 0.618010i \(0.787939\pi\)
\(390\) 5.80676 + 14.4400i 0.294037 + 0.731198i
\(391\) 18.9499i 0.958336i
\(392\) 19.6572i 0.992839i
\(393\) 12.2665i 0.618763i
\(394\) −4.05013 4.05013i −0.204042 0.204042i
\(395\) −7.74273 + 7.74273i −0.389579 + 0.389579i
\(396\) −17.8661 17.8661i −0.897806 0.897806i
\(397\) −27.6947 27.6947i −1.38996 1.38996i −0.825379 0.564579i \(-0.809038\pi\)
−0.564579 0.825379i \(-0.690962\pi\)
\(398\) −25.4558 −1.27599
\(399\) −4.31662 −0.216102
\(400\) 16.0000i 0.800000i
\(401\) 26.7283i 1.33475i 0.744723 + 0.667373i \(0.232581\pi\)
−0.744723 + 0.667373i \(0.767419\pi\)
\(402\) 28.6332i 1.42810i
\(403\) −14.1925 + 5.70723i −0.706980 + 0.284298i
\(404\) 12.6332 + 12.6332i 0.628528 + 0.628528i
\(405\) −8.44984 + 8.44984i −0.419876 + 0.419876i
\(406\) 0.100251 + 0.100251i 0.00497539 + 0.00497539i
\(407\) 18.6332i 0.923616i
\(408\) −18.3139 18.3139i −0.906673 0.906673i
\(409\) 30.5940 1.51278 0.756389 0.654122i \(-0.226962\pi\)
0.756389 + 0.654122i \(0.226962\pi\)
\(410\) 0 0
\(411\) 30.3701 30.3701i 1.49805 1.49805i
\(412\) 1.89975i 0.0935939i
\(413\) 1.73350 1.73350i 0.0853000 0.0853000i
\(414\) 56.4268i 2.77322i
\(415\) −16.9499 −0.832037
\(416\) −18.9234 + 7.60964i −0.927794 + 0.373094i
\(417\) −10.6834 −0.523167
\(418\) 17.8661i 0.873860i
\(419\) 5.84169 5.84169i 0.285385 0.285385i −0.549867 0.835252i \(-0.685322\pi\)
0.835252 + 0.549867i \(0.185322\pi\)
\(420\) 1.36675i 0.0666906i
\(421\) −15.7448 + 15.7448i −0.767354 + 0.767354i −0.977640 0.210286i \(-0.932561\pi\)
0.210286 + 0.977640i \(0.432561\pi\)
\(422\) 9.22783 + 9.22783i 0.449204 + 0.449204i
\(423\) −66.7740 −3.24666
\(424\) 10.2764 10.2764i 0.499065 0.499065i
\(425\) 12.0000i 0.582086i
\(426\) −2.05013 2.05013i −0.0993289 0.0993289i
\(427\) 0.895550 0.895550i 0.0433387 0.0433387i
\(428\) −19.2665 19.2665i −0.931281 0.931281i
\(429\) −20.4213 + 8.21200i −0.985947 + 0.396479i
\(430\) 10.9499i 0.528050i
\(431\) 6.32852i 0.304834i −0.988316 0.152417i \(-0.951294\pi\)
0.988316 0.152417i \(-0.0487057\pi\)
\(432\) −28.6332 28.6332i −1.37762 1.37762i
\(433\) 10.0501 0.482978 0.241489 0.970404i \(-0.422364\pi\)
0.241489 + 0.970404i \(0.422364\pi\)
\(434\) −1.34333 −0.0644817
\(435\) −0.966438 0.966438i −0.0463372 0.0463372i
\(436\) 4.69042 + 4.69042i 0.224630 + 0.224630i
\(437\) 28.2134 28.2134i 1.34963 1.34963i
\(438\) 11.5831 + 11.5831i 0.553463 + 0.553463i
\(439\) 0.949874i 0.0453350i 0.999743 + 0.0226675i \(0.00721591\pi\)
−0.999743 + 0.0226675i \(0.992784\pi\)
\(440\) 5.65685 0.269680
\(441\) 43.8997i 2.09046i
\(442\) −14.1925 + 5.70723i −0.675069 + 0.271465i
\(443\) 22.1082 + 22.1082i 1.05039 + 1.05039i 0.998661 + 0.0517306i \(0.0164737\pi\)
0.0517306 + 0.998661i \(0.483526\pi\)
\(444\) 56.8745i 2.69915i
\(445\) 9.94987 9.94987i 0.471669 0.471669i
\(446\) 32.8496 1.55547
\(447\) 30.5231i 1.44370i
\(448\) −1.79110 −0.0846215
\(449\) 4.31353i 0.203568i −0.994807 0.101784i \(-0.967545\pi\)
0.994807 0.101784i \(-0.0324551\pi\)
\(450\) 35.7322i 1.68443i
\(451\) 0 0
\(452\) 12.0000 0.564433
\(453\) 9.64016 9.64016i 0.452934 0.452934i
\(454\) −2.00000 + 2.00000i −0.0938647 + 0.0938647i
\(455\) 0.742551 + 0.316625i 0.0348113 + 0.0148436i
\(456\) 54.5330i 2.55374i
\(457\) −14.5190 −0.679171 −0.339586 0.940575i \(-0.610287\pi\)
−0.339586 + 0.940575i \(0.610287\pi\)
\(458\) −2.36675 2.36675i −0.110591 0.110591i
\(459\) −21.4749 21.4749i −1.00236 1.00236i
\(460\) −8.93306 8.93306i −0.416506 0.416506i
\(461\) −4.27808 4.27808i −0.199250 0.199250i 0.600428 0.799679i \(-0.294997\pi\)
−0.799679 + 0.600428i \(0.794997\pi\)
\(462\) −1.93288 −0.0899256
\(463\) 12.7279i 0.591517i 0.955263 + 0.295758i \(0.0955723\pi\)
−0.955263 + 0.295758i \(0.904428\pi\)
\(464\) 1.26650 1.26650i 0.0587957 0.0587957i
\(465\) 12.9499 0.600536
\(466\) 31.9374 1.47947
\(467\) −3.63325 + 3.63325i −0.168127 + 0.168127i −0.786155 0.618029i \(-0.787932\pi\)
0.618029 + 0.786155i \(0.287932\pi\)
\(468\) −42.2608 + 16.9943i −1.95351 + 0.785564i
\(469\) 1.05013 + 1.05013i 0.0484903 + 0.0484903i
\(470\) 10.5712 10.5712i 0.487611 0.487611i
\(471\) 34.3166i 1.58123i
\(472\) −21.8997 21.8997i −1.00802 1.00802i
\(473\) 15.4855 0.712022
\(474\) −33.4225 33.4225i −1.53514 1.53514i
\(475\) 17.8661 17.8661i 0.819753 0.819753i
\(476\) −1.34333 −0.0615712
\(477\) 22.9499 22.9499i 1.05080 1.05080i
\(478\) −16.9499 −0.775269
\(479\) 16.2280i 0.741477i 0.928737 + 0.370738i \(0.120895\pi\)
−0.928737 + 0.370738i \(0.879105\pi\)
\(480\) 17.2665 0.788104
\(481\) −30.8997 13.1757i −1.40891 0.600760i
\(482\) 18.0000 0.819878
\(483\) 3.05231 + 3.05231i 0.138885 + 0.138885i
\(484\) 14.0000i 0.636364i
\(485\) 6.00000 + 6.00000i 0.272446 + 0.272446i
\(486\) −6.10463 6.10463i −0.276912 0.276912i
\(487\) 29.2507 1.32548 0.662738 0.748851i \(-0.269394\pi\)
0.662738 + 0.748851i \(0.269394\pi\)
\(488\) −11.3137 11.3137i −0.512148 0.512148i
\(489\) −37.5942 −1.70007
\(490\) −6.94987 6.94987i −0.313963 0.313963i
\(491\) 21.1583 + 21.1583i 0.954861 + 0.954861i 0.999024 0.0441631i \(-0.0140621\pi\)
−0.0441631 + 0.999024i \(0.514062\pi\)
\(492\) 0 0
\(493\) 0.949874 0.949874i 0.0427802 0.0427802i
\(494\) 29.6276 + 12.6332i 1.33301 + 0.568397i
\(495\) 12.6332 0.567822
\(496\) 16.9706i 0.762001i
\(497\) −0.150377 −0.00674533
\(498\) 73.1662i 3.27866i
\(499\) 17.4183 + 17.4183i 0.779752 + 0.779752i 0.979788 0.200037i \(-0.0641061\pi\)
−0.200037 + 0.979788i \(0.564106\pi\)
\(500\) −12.7279 12.7279i −0.569210 0.569210i
\(501\) −30.3701 + 30.3701i −1.35684 + 1.35684i
\(502\) −5.13819 + 5.13819i −0.229329 + 0.229329i
\(503\) 10.4169i 0.464466i 0.972660 + 0.232233i \(0.0746031\pi\)
−0.972660 + 0.232233i \(0.925397\pi\)
\(504\) −4.00000 −0.178174
\(505\) −8.93306 −0.397516
\(506\) 12.6332 12.6332i 0.561616 0.561616i
\(507\) −0.821953 + 39.6716i −0.0365042 + 1.76188i
\(508\) −5.89975 −0.261759
\(509\) 5.65685 + 5.65685i 0.250736 + 0.250736i 0.821272 0.570537i \(-0.193265\pi\)
−0.570537 + 0.821272i \(0.693265\pi\)
\(510\) 12.9499 0.573430
\(511\) 0.849623 0.0375851
\(512\) 22.6274i 1.00000i
\(513\) 63.9456i 2.82327i
\(514\) 21.2132i 0.935674i
\(515\) 0.671663 + 0.671663i 0.0295970 + 0.0295970i
\(516\) 47.2665 2.08079
\(517\) 14.9499 + 14.9499i 0.657495 + 0.657495i
\(518\) −2.08588 2.08588i −0.0916481 0.0916481i
\(519\) 66.1161i 2.90218i
\(520\) 4.00000 9.38083i 0.175412 0.411377i
\(521\) 7.41688i 0.324939i 0.986714 + 0.162470i \(0.0519459\pi\)
−0.986714 + 0.162470i \(0.948054\pi\)
\(522\) 2.82843 2.82843i 0.123797 0.123797i
\(523\) 0.0501256 + 0.0501256i 0.00219184 + 0.00219184i 0.708202 0.706010i \(-0.249507\pi\)
−0.706010 + 0.708202i \(0.749507\pi\)
\(524\) −5.68338 + 5.68338i −0.248279 + 0.248279i
\(525\) 1.93288 + 1.93288i 0.0843577 + 0.0843577i
\(526\) 0.895550 0.0390478
\(527\) 12.7279i 0.554437i
\(528\) 24.4185i 1.06268i
\(529\) −16.8997 −0.734772
\(530\) 7.26650i 0.315637i
\(531\) −48.9079 48.9079i −2.12242 2.12242i
\(532\) 2.00000 + 2.00000i 0.0867110 + 0.0867110i
\(533\) 0 0
\(534\) 42.9499 + 42.9499i 1.85862 + 1.85862i
\(535\) 13.6235 0.588994
\(536\) 13.2665 13.2665i 0.573025 0.573025i
\(537\) 29.3166i 1.26511i
\(538\) −17.8661 17.8661i −0.770263 0.770263i
\(539\) 9.82861 9.82861i 0.423348 0.423348i
\(540\) 20.2468 0.871282
\(541\) 14.6254 + 14.6254i 0.628793 + 0.628793i 0.947764 0.318971i \(-0.103337\pi\)
−0.318971 + 0.947764i \(0.603337\pi\)
\(542\) −32.8496 −1.41101
\(543\) −77.4829 −3.32511
\(544\) 16.9706i 0.727607i
\(545\) −3.31662 −0.142069
\(546\) −1.36675 + 3.20531i −0.0584915 + 0.137175i
\(547\) 5.42481 5.42481i 0.231948 0.231948i −0.581557 0.813505i \(-0.697556\pi\)
0.813505 + 0.581557i \(0.197556\pi\)
\(548\) −28.1425 −1.20219
\(549\) −25.2665 25.2665i −1.07835 1.07835i
\(550\) 8.00000 8.00000i 0.341121 0.341121i
\(551\) −2.82843 −0.120495
\(552\) 38.5607 38.5607i 1.64125 1.64125i
\(553\) −2.45154 −0.104250
\(554\) 21.1423 21.1423i 0.898251 0.898251i
\(555\) 20.1082 + 20.1082i 0.853545 + 0.853545i
\(556\) 4.94987 + 4.94987i 0.209921 + 0.209921i
\(557\) −8.52073 8.52073i −0.361035 0.361035i 0.503159 0.864194i \(-0.332171\pi\)
−0.864194 + 0.503159i \(0.832171\pi\)
\(558\) 37.8997i 1.60442i
\(559\) 10.9499 25.6797i 0.463130 1.08614i
\(560\) 0.633250 0.633250i 0.0267597 0.0267597i
\(561\) 18.3139i 0.773213i
\(562\) 18.0000i 0.759284i
\(563\) −24.1583 + 24.1583i −1.01815 + 1.01815i −0.0183193 + 0.999832i \(0.505832\pi\)
−0.999832 + 0.0183193i \(0.994168\pi\)
\(564\) 45.6317 + 45.6317i 1.92144 + 1.92144i
\(565\) −4.24264 + 4.24264i −0.178489 + 0.178489i
\(566\) 15.5563 15.5563i 0.653882 0.653882i
\(567\) −2.67543 −0.112357
\(568\) 1.89975i 0.0797117i
\(569\) 21.6332i 0.906913i −0.891278 0.453457i \(-0.850191\pi\)
0.891278 0.453457i \(-0.149809\pi\)
\(570\) −19.2803 19.2803i −0.807564 0.807564i
\(571\) −21.4248 21.4248i −0.896600 0.896600i 0.0985333 0.995134i \(-0.468585\pi\)
−0.995134 + 0.0985333i \(0.968585\pi\)
\(572\) 13.2665 + 5.65685i 0.554700 + 0.236525i
\(573\) −38.8496 + 38.8496i −1.62297 + 1.62297i
\(574\) 0 0
\(575\) −25.2665 −1.05369
\(576\) 50.5330i 2.10554i
\(577\) 29.6985i 1.23636i −0.786035 0.618182i \(-0.787869\pi\)
0.786035 0.618182i \(-0.212131\pi\)
\(578\) 11.3137i 0.470588i
\(579\) 27.4708 + 27.4708i 1.14165 + 1.14165i
\(580\) 0.895550i 0.0371857i
\(581\) −2.68338 2.68338i −0.111325 0.111325i
\(582\) −25.8997 + 25.8997i −1.07358 + 1.07358i
\(583\) −10.2764 −0.425604
\(584\) 10.7335i 0.444155i
\(585\) 8.93306 20.9499i 0.369336 0.866171i
\(586\) −17.9499 17.9499i −0.741502 0.741502i
\(587\) 10.6420 10.6420i 0.439244 0.439244i −0.452513 0.891758i \(-0.649473\pi\)
0.891758 + 0.452513i \(0.149473\pi\)
\(588\) 30.0000 30.0000i 1.23718 1.23718i
\(589\) 18.9499 18.9499i 0.780816 0.780816i
\(590\) 15.4855 0.637526
\(591\) 12.3623i 0.508515i
\(592\) −26.3514 + 26.3514i −1.08304 + 1.08304i
\(593\) 4.31353i 0.177135i −0.996070 0.0885677i \(-0.971771\pi\)
0.996070 0.0885677i \(-0.0282290\pi\)
\(594\) 28.6332i 1.17484i
\(595\) 0.474937 0.474937i 0.0194705 0.0194705i
\(596\) −14.1421 + 14.1421i −0.579284 + 0.579284i
\(597\) 38.8496 + 38.8496i 1.59001 + 1.59001i
\(598\) −12.0168 29.8829i −0.491404 1.22200i
\(599\) 11.6834i 0.477370i −0.971097 0.238685i \(-0.923284\pi\)
0.971097 0.238685i \(-0.0767163\pi\)
\(600\) 24.4185 24.4185i 0.996882 0.996882i
\(601\) 28.8997i 1.17885i 0.807825 + 0.589423i \(0.200645\pi\)
−0.807825 + 0.589423i \(0.799355\pi\)
\(602\) 1.73350 1.73350i 0.0706522 0.0706522i
\(603\) 29.6276 29.6276i 1.20653 1.20653i
\(604\) −8.93306 −0.363481
\(605\) 4.94975 + 4.94975i 0.201236 + 0.201236i
\(606\) 38.5607i 1.56642i
\(607\) 32.9499 1.33739 0.668697 0.743535i \(-0.266852\pi\)
0.668697 + 0.743535i \(0.266852\pi\)
\(608\) 25.2665 25.2665i 1.02469 1.02469i
\(609\) 0.305998i 0.0123997i
\(610\) 8.00000 0.323911
\(611\) 35.3627 14.2204i 1.43062 0.575296i
\(612\) 37.8997i 1.53201i
\(613\) 27.2469 27.2469i 1.10049 1.10049i 0.106143 0.994351i \(-0.466150\pi\)
0.994351 0.106143i \(-0.0338501\pi\)
\(614\) −17.6834 + 17.6834i −0.713643 + 0.713643i
\(615\) 0 0
\(616\) 0.895550 + 0.895550i 0.0360827 + 0.0360827i
\(617\) 1.34333 0.0540802 0.0270401 0.999634i \(-0.491392\pi\)
0.0270401 + 0.999634i \(0.491392\pi\)
\(618\) −2.89932 + 2.89932i −0.116628 + 0.116628i
\(619\) −5.13819 + 5.13819i −0.206521 + 0.206521i −0.802787 0.596266i \(-0.796650\pi\)
0.596266 + 0.802787i \(0.296650\pi\)
\(620\) −6.00000 6.00000i −0.240966 0.240966i
\(621\) 45.2164 45.2164i 1.81447 1.81447i
\(622\) −25.9036 −1.03864
\(623\) 3.15038 0.126217
\(624\) 40.4935 + 17.2665i 1.62104 + 0.691213i
\(625\) −11.0000 −0.440000
\(626\) −14.0712 −0.562400
\(627\) 27.2665 27.2665i 1.08892 1.08892i
\(628\) −15.8997 + 15.8997i −0.634469 + 0.634469i
\(629\) −19.7635 + 19.7635i −0.788024 + 0.788024i
\(630\) 1.41421 1.41421i 0.0563436 0.0563436i
\(631\) 5.80985 0.231287 0.115643 0.993291i \(-0.463107\pi\)
0.115643 + 0.993291i \(0.463107\pi\)
\(632\) 30.9709i 1.23196i
\(633\) 28.1662i 1.11951i
\(634\) −21.8997 + 21.8997i −0.869750 + 0.869750i
\(635\) 2.08588 2.08588i 0.0827755 0.0827755i
\(636\) −31.3668 −1.24377
\(637\) −9.34903 23.2488i −0.370422 0.921150i
\(638\) −1.26650 −0.0501412
\(639\) 4.24264i 0.167836i
\(640\) −8.00000 8.00000i −0.316228 0.316228i
\(641\) 12.0000 0.473972 0.236986 0.971513i \(-0.423841\pi\)
0.236986 + 0.971513i \(0.423841\pi\)
\(642\) 58.8074i 2.32094i
\(643\) 8.93306 + 8.93306i 0.352285 + 0.352285i 0.860959 0.508674i \(-0.169864\pi\)
−0.508674 + 0.860959i \(0.669864\pi\)
\(644\) 2.82843i 0.111456i
\(645\) −16.7112 + 16.7112i −0.658004 + 0.658004i
\(646\) 18.9499 18.9499i 0.745573 0.745573i
\(647\) 19.5831i 0.769892i −0.922939 0.384946i \(-0.874220\pi\)
0.922939 0.384946i \(-0.125780\pi\)
\(648\) 33.7993i 1.32776i
\(649\) 21.8997i 0.859640i
\(650\) −7.60964 18.9234i −0.298475 0.742235i
\(651\) 2.05013 + 2.05013i 0.0803508 + 0.0803508i
\(652\) 17.4183 + 17.4183i 0.682155 + 0.682155i
\(653\) −13.5831 + 13.5831i −0.531549 + 0.531549i −0.921033 0.389484i \(-0.872653\pi\)
0.389484 + 0.921033i \(0.372653\pi\)
\(654\) 14.3166i 0.559824i
\(655\) 4.01875i 0.157026i
\(656\) 0 0
\(657\) 23.9707i 0.935188i
\(658\) 3.34709 0.130483
\(659\) −8.68338 + 8.68338i −0.338256 + 0.338256i −0.855711 0.517454i \(-0.826880\pi\)
0.517454 + 0.855711i \(0.326880\pi\)
\(660\) −8.63325 8.63325i −0.336049 0.336049i
\(661\) 17.4183 17.4183i 0.677495 0.677495i −0.281938 0.959433i \(-0.590977\pi\)
0.959433 + 0.281938i \(0.0909772\pi\)
\(662\) 7.58312 + 7.58312i 0.294726 + 0.294726i
\(663\) 30.3701 + 12.9499i 1.17948 + 0.502931i
\(664\) −33.8997 + 33.8997i −1.31557 + 1.31557i
\(665\) −1.41421 −0.0548408
\(666\) −58.8496 + 58.8496i −2.28038 + 2.28038i
\(667\) 2.00000 + 2.00000i 0.0774403 + 0.0774403i
\(668\) 28.1425 1.08887
\(669\) −50.1337 50.1337i −1.93828 1.93828i
\(670\) 9.38083i 0.362413i
\(671\) 11.3137i 0.436761i
\(672\) 2.73350 + 2.73350i 0.105447 + 0.105447i
\(673\) 18.8997 0.728532 0.364266 0.931295i \(-0.381320\pi\)
0.364266 + 0.931295i \(0.381320\pi\)
\(674\) 8.41439i 0.324110i
\(675\) 28.6332 28.6332i 1.10209 1.10209i
\(676\) 18.7617 18.0000i 0.721602 0.692308i
\(677\) 8.68338 + 8.68338i 0.333729 + 0.333729i 0.854001 0.520272i \(-0.174169\pi\)
−0.520272 + 0.854001i \(0.674169\pi\)
\(678\) −18.3139 18.3139i −0.703341 0.703341i
\(679\) 1.89975i 0.0729057i
\(680\) −6.00000 6.00000i −0.230089 0.230089i
\(681\) 6.10463 0.233930
\(682\) 8.48528 8.48528i 0.324918 0.324918i
\(683\) −10.5712 + 10.5712i −0.404494 + 0.404494i −0.879813 0.475319i \(-0.842333\pi\)
0.475319 + 0.879813i \(0.342333\pi\)
\(684\) 56.4268 56.4268i 2.15753 2.15753i
\(685\) 9.94987 9.94987i 0.380165 0.380165i
\(686\) 4.41688i 0.168637i
\(687\) 7.22407i 0.275615i
\(688\) −21.8997 21.8997i −0.834920 0.834920i
\(689\) −7.26650 + 17.0415i −0.276832 + 0.649228i
\(690\) 27.2665i 1.03802i
\(691\) 3.34709 + 3.34709i 0.127329 + 0.127329i 0.767900 0.640570i \(-0.221302\pi\)
−0.640570 + 0.767900i \(0.721302\pi\)
\(692\) −30.6332 + 30.6332i −1.16450 + 1.16450i
\(693\) 2.00000 + 2.00000i 0.0759737 + 0.0759737i
\(694\) 8.26139 8.26139i 0.313598 0.313598i
\(695\) −3.50009 −0.132766
\(696\) −3.86575 −0.146531
\(697\) 0 0
\(698\) 4.26650 4.26650i 0.161489 0.161489i
\(699\) −48.7414 48.7414i −1.84357 1.84357i
\(700\) 1.79110i 0.0676972i
\(701\) 11.2164 11.2164i 0.423637 0.423637i −0.462817 0.886454i \(-0.653161\pi\)
0.886454 + 0.462817i \(0.153161\pi\)
\(702\) 47.4829 + 20.2468i 1.79213 + 0.764165i
\(703\) 58.8496 2.21956
\(704\) 11.3137 11.3137i 0.426401 0.426401i
\(705\) −32.2665 −1.21523
\(706\) 15.8997 0.598395
\(707\) −1.41421 1.41421i −0.0531870 0.0531870i
\(708\) 66.8449i 2.51219i
\(709\) 3.34709 3.34709i 0.125703 0.125703i −0.641457 0.767159i \(-0.721670\pi\)
0.767159 + 0.641457i \(0.221670\pi\)
\(710\) −0.671663 0.671663i −0.0252070 0.0252070i
\(711\) 69.1662i 2.59394i
\(712\) 39.7995i 1.49155i
\(713\) −26.7992 −1.00364
\(714\) 2.05013 + 2.05013i 0.0767240 + 0.0767240i
\(715\) −6.69042 + 2.69042i −0.250207 + 0.100616i
\(716\) −13.5831 + 13.5831i −0.507625 + 0.507625i
\(717\) 25.8682 + 25.8682i 0.966065 + 0.966065i
\(718\) 18.0000i 0.671754i
\(719\) −6.00000 −0.223762 −0.111881 0.993722i \(-0.535688\pi\)
−0.111881 + 0.993722i \(0.535688\pi\)
\(720\) −17.8661 17.8661i −0.665831 0.665831i
\(721\) 0.212665i 0.00792006i
\(722\) −29.5567 −1.09999
\(723\) −27.4708 27.4708i −1.02165 1.02165i
\(724\) 35.8997 + 35.8997i 1.33420 + 1.33420i
\(725\) 1.26650 + 1.26650i 0.0470366 + 0.0470366i
\(726\) −21.3662 + 21.3662i −0.792974 + 0.792974i
\(727\) 37.8997i 1.40562i 0.711376 + 0.702812i \(0.248072\pi\)
−0.711376 + 0.702812i \(0.751928\pi\)
\(728\) 2.11835 0.851852i 0.0785113 0.0315717i
\(729\) 17.2164i 0.637643i
\(730\) 3.79487 + 3.79487i 0.140454 + 0.140454i
\(731\) −16.4248 16.4248i −0.607494 0.607494i
\(732\) 34.5330i 1.27638i
\(733\) 6.81174 + 6.81174i 0.251597 + 0.251597i 0.821625 0.570028i \(-0.193068\pi\)
−0.570028 + 0.821625i \(0.693068\pi\)
\(734\) 39.4562i 1.45636i
\(735\) 21.2132i 0.782461i
\(736\) −35.7322 −1.31711
\(737\) −13.2665 −0.488678
\(738\) 0 0
\(739\) 18.7617 + 18.7617i 0.690159 + 0.690159i 0.962267 0.272108i \(-0.0877207\pi\)
−0.272108 + 0.962267i \(0.587721\pi\)
\(740\) 18.6332i 0.684972i
\(741\) −25.9360 64.4967i −0.952784 2.36935i
\(742\) −1.15038 + 1.15038i −0.0422317 + 0.0422317i
\(743\) 12.0563 0.442301 0.221151 0.975240i \(-0.429019\pi\)
0.221151 + 0.975240i \(0.429019\pi\)
\(744\) 25.8997 25.8997i 0.949531 0.949531i
\(745\) 10.0000i 0.366372i
\(746\) 4.17175 4.17175i 0.152739 0.152739i
\(747\) −75.7071 + 75.7071i −2.76998 + 2.76998i
\(748\) 8.48528 8.48528i 0.310253 0.310253i
\(749\) 2.15676 + 2.15676i 0.0788065 + 0.0788065i
\(750\) 38.8496i 1.41859i
\(751\) 15.8997 0.580190 0.290095 0.956998i \(-0.406313\pi\)
0.290095 + 0.956998i \(0.406313\pi\)
\(752\) 42.2846i 1.54196i
\(753\) 15.6834 0.571534
\(754\) −0.895550 + 2.10025i −0.0326140 + 0.0764866i
\(755\) 3.15831 3.15831i 0.114943 0.114943i
\(756\) 3.20531 + 3.20531i 0.116576 + 0.116576i
\(757\) 20.8997 + 20.8997i 0.759614 + 0.759614i 0.976252 0.216638i \(-0.0695091\pi\)
−0.216638 + 0.976252i \(0.569509\pi\)
\(758\) −24.3166 24.3166i −0.883220 0.883220i
\(759\) −38.5607 −1.39966
\(760\) 17.8661i 0.648072i
\(761\) 12.7279 0.461387 0.230693 0.973026i \(-0.425901\pi\)
0.230693 + 0.973026i \(0.425901\pi\)
\(762\) 9.00394 + 9.00394i 0.326179 + 0.326179i
\(763\) −0.525063 0.525063i −0.0190086 0.0190086i
\(764\) 36.0000 1.30243
\(765\) −13.3996 13.3996i −0.484463 0.484463i
\(766\) 2.94987 0.106583
\(767\) 36.3166 + 15.4855i 1.31132 + 0.559148i
\(768\) 34.5330 34.5330i 1.24610 1.24610i
\(769\) 25.4558i 0.917961i −0.888446 0.458981i \(-0.848215\pi\)
0.888446 0.458981i \(-0.151785\pi\)
\(770\) −0.633250 −0.0228207
\(771\) 32.3747 32.3747i 1.16595 1.16595i
\(772\) 25.4558i 0.916176i
\(773\) 23.2636 23.2636i 0.836735 0.836735i −0.151693 0.988428i \(-0.548472\pi\)
0.988428 + 0.151693i \(0.0484725\pi\)
\(774\) −48.9079 48.9079i −1.75796 1.75796i
\(775\) −16.9706 −0.609601
\(776\) 24.0000 0.861550
\(777\) 6.36675i 0.228406i
\(778\) 4.69042 4.69042i 0.168160 0.168160i
\(779\) 0 0
\(780\) −20.4213 + 8.21200i −0.731198 + 0.294037i
\(781\) 0.949874 0.949874i 0.0339892 0.0339892i
\(782\) −26.7992 −0.958336
\(783\) −4.53300 −0.161996
\(784\) −27.7995 −0.992839
\(785\) 11.2428i 0.401273i
\(786\) 17.3474 0.618763
\(787\) −25.0081 25.0081i −0.891441 0.891441i 0.103217 0.994659i \(-0.467086\pi\)
−0.994659 + 0.103217i \(0.967086\pi\)
\(788\) 5.72774 5.72774i 0.204042 0.204042i
\(789\) −1.36675 1.36675i −0.0486576 0.0486576i
\(790\) −10.9499 10.9499i −0.389579 0.389579i
\(791\) −1.34333 −0.0477631
\(792\) 25.2665 25.2665i 0.897806 0.897806i
\(793\) 18.7617 + 8.00000i 0.666246 + 0.284088i
\(794\) 39.1662 39.1662i 1.38996 1.38996i
\(795\) 11.0898 11.0898i 0.393315 0.393315i
\(796\) 36.0000i 1.27599i
\(797\) −34.5831 + 34.5831i −1.22500 + 1.22500i −0.259164 + 0.965833i \(0.583447\pi\)
−0.965833 + 0.259164i \(0.916553\pi\)
\(798\) 6.10463i 0.216102i
\(799\) 31.7135i 1.12194i
\(800\) −22.6274 −0.800000
\(801\) 88.8828i 3.14052i
\(802\) −37.7995 −1.33475
\(803\) −5.36675 + 5.36675i −0.189389 + 0.189389i
\(804\) −40.4935 −1.42810
\(805\) 1.00000 + 1.00000i 0.0352454 + 0.0352454i
\(806\) −8.07125 20.0712i −0.284298 0.706980i
\(807\) 54.5330i 1.91965i
\(808\) −17.8661 + 17.8661i −0.628528 + 0.628528i
\(809\) 22.5831i 0.793980i −0.917823 0.396990i \(-0.870055\pi\)
0.917823 0.396990i \(-0.129945\pi\)
\(810\) −11.9499 11.9499i −0.419876 0.419876i
\(811\) −27.6947 + 27.6947i −0.972493 + 0.972493i −0.999632 0.0271385i \(-0.991360\pi\)
0.0271385 + 0.999632i \(0.491360\pi\)
\(812\) −0.141777 + 0.141777i −0.00497539 + 0.00497539i
\(813\) 50.1337 + 50.1337i 1.75827 + 1.75827i
\(814\) 26.3514 0.923616
\(815\) −12.3166 −0.431433
\(816\) 25.8997 25.8997i 0.906673 0.906673i
\(817\) 48.9079i 1.71107i
\(818\) 43.2665i 1.51278i
\(819\) 4.73084 1.90241i 0.165309 0.0664756i
\(820\) 0 0
\(821\) 17.6777 17.6777i 0.616955 0.616955i −0.327794 0.944749i \(-0.606305\pi\)
0.944749 + 0.327794i \(0.106305\pi\)
\(822\) 42.9499 + 42.9499i 1.49805 + 1.49805i
\(823\) 18.9499i 0.660551i 0.943885 + 0.330276i \(0.107142\pi\)
−0.943885 + 0.330276i \(0.892858\pi\)
\(824\) 2.68665 0.0935939
\(825\) −24.4185 −0.850144
\(826\) 2.45154 + 2.45154i 0.0853000 + 0.0853000i
\(827\) 3.50009 3.50009i 0.121710 0.121710i −0.643628 0.765338i \(-0.722572\pi\)
0.765338 + 0.643628i \(0.222572\pi\)
\(828\) −79.7995 −2.77322
\(829\) −8.00000 + 8.00000i −0.277851 + 0.277851i −0.832251 0.554399i \(-0.812948\pi\)
0.554399 + 0.832251i \(0.312948\pi\)
\(830\) 23.9707i 0.832037i
\(831\) −64.5330 −2.23862
\(832\) −10.7617 26.7617i −0.373094 0.927794i
\(833\) −20.8496 −0.722397
\(834\) 15.1086i 0.523167i
\(835\) −9.94987 + 9.94987i −0.344330 + 0.344330i
\(836\) −25.2665 −0.873860
\(837\) 30.3701 30.3701i 1.04975 1.04975i
\(838\) 8.26139 + 8.26139i 0.285385 + 0.285385i
\(839\) 15.4146 0.532170 0.266085 0.963950i \(-0.414270\pi\)
0.266085 + 0.963950i \(0.414270\pi\)
\(840\) −1.93288 −0.0666906
\(841\) 28.7995i 0.993086i
\(842\) −22.2665 22.2665i −0.767354 0.767354i
\(843\) −27.4708 + 27.4708i −0.946146 + 0.946146i
\(844\) −13.0501 + 13.0501i −0.449204 + 0.449204i
\(845\) −0.269289 + 12.9972i −0.00926381 + 0.447118i
\(846\) 94.4327i 3.24666i
\(847\) 1.56721i 0.0538501i
\(848\) 14.5330 + 14.5330i 0.499065 + 0.499065i
\(849\) −47.4829 −1.62961
\(850\) −16.9706 −0.582086
\(851\) −41.6130 41.6130i −1.42647 1.42647i
\(852\) 2.89932 2.89932i 0.0993289 0.0993289i
\(853\) −19.9874 + 19.9874i −0.684357 + 0.684357i −0.960979 0.276622i \(-0.910785\pi\)
0.276622 + 0.960979i \(0.410785\pi\)
\(854\) 1.26650 + 1.26650i 0.0433387 + 0.0433387i
\(855\) 39.8997i 1.36454i
\(856\) 27.2469 27.2469i 0.931281 0.931281i
\(857\) 36.6332i 1.25137i −0.780077 0.625684i \(-0.784820\pi\)
0.780077 0.625684i \(-0.215180\pi\)
\(858\) −11.6135 28.8800i −0.396479 0.985947i
\(859\) 25.9499 + 25.9499i 0.885398 + 0.885398i 0.994077 0.108679i \(-0.0346619\pi\)
−0.108679 + 0.994077i \(0.534662\pi\)
\(860\) 15.4855 0.528050
\(861\) 0 0
\(862\) 8.94987 0.304834
\(863\) 20.4707i 0.696829i 0.937341 + 0.348415i \(0.113280\pi\)
−0.937341 + 0.348415i \(0.886720\pi\)
\(864\) 40.4935 40.4935i 1.37762 1.37762i
\(865\) 21.6610i 0.736495i
\(866\) 14.2130i 0.482978i
\(867\) −17.2665 + 17.2665i −0.586401 + 0.586401i
\(868\) 1.89975i 0.0644817i
\(869\) 15.4855 15.4855i 0.525308 0.525308i
\(870\) 1.36675 1.36675i 0.0463372 0.0463372i
\(871\) −9.38083 + 22.0000i −0.317857 + 0.745442i
\(872\) −6.63325 + 6.63325i −0.224630 + 0.224630i
\(873\) 53.5983 1.81403
\(874\) 39.8997 + 39.8997i 1.34963 + 1.34963i
\(875\) 1.42481 + 1.42481i 0.0481674 + 0.0481674i
\(876\) −16.3810 + 16.3810i −0.553463 + 0.553463i
\(877\) −1.67355 1.67355i −0.0565116 0.0565116i 0.678286 0.734798i \(-0.262723\pi\)
−0.734798 + 0.678286i \(0.762723\pi\)
\(878\) −1.34333 −0.0453350
\(879\) 54.7887i 1.84798i
\(880\) 8.00000i 0.269680i
\(881\) 21.0000 0.707508 0.353754 0.935339i \(-0.384905\pi\)
0.353754 + 0.935339i \(0.384905\pi\)
\(882\) −62.0836 −2.09046
\(883\) 1.47494 1.47494i 0.0496356 0.0496356i −0.681853 0.731489i \(-0.738826\pi\)
0.731489 + 0.681853i \(0.238826\pi\)
\(884\) −8.07125 20.0712i −0.271465 0.675069i
\(885\) −23.6332 23.6332i −0.794423 0.794423i
\(886\) −31.2657 + 31.2657i −1.05039 + 1.05039i
\(887\) 39.1662i 1.31507i 0.753422 + 0.657537i \(0.228402\pi\)
−0.753422 + 0.657537i \(0.771598\pi\)
\(888\) 80.4327 2.69915
\(889\) 0.660440 0.0221505
\(890\) 14.0712 + 14.0712i 0.471669 + 0.471669i
\(891\) 16.8997 16.8997i 0.566160 0.566160i
\(892\) 46.4564i 1.55547i
\(893\) −47.2164 + 47.2164i −1.58004 + 1.58004i
\(894\) 43.1662 1.44370
\(895\) 9.60472i 0.321050i
\(896\) 2.53300i 0.0846215i
\(897\) −27.2665 + 63.9456i −0.910402 + 2.13508i
\(898\) 6.10025 0.203568
\(899\) 1.34333 + 1.34333i 0.0448024 + 0.0448024i
\(900\) −50.5330 −1.68443
\(901\) 10.8997 + 10.8997i 0.363123 + 0.363123i
\(902\) 0 0
\(903\) −5.29119 −0.176080
\(904\) 16.9706i 0.564433i
\(905\) −25.3850 −0.843824
\(906\) 13.6332 + 13.6332i 0.452934 + 0.452934i
\(907\) −25.3747 25.3747i −0.842553 0.842553i 0.146638 0.989190i \(-0.453155\pi\)
−0.989190 + 0.146638i \(0.953155\pi\)
\(908\) −2.82843 2.82843i −0.0938647 0.0938647i
\(909\) −39.8997 + 39.8997i −1.32339 + 1.32339i
\(910\) −0.447775 + 1.05013i −0.0148436 + 0.0348113i
\(911\) −30.0000 −0.993944 −0.496972 0.867766i \(-0.665555\pi\)
−0.496972 + 0.867766i \(0.665555\pi\)
\(912\) −77.1213 −2.55374
\(913\) 33.8997 1.12192
\(914\) 20.5330i 0.679171i
\(915\) −12.2093 12.2093i −0.403626 0.403626i
\(916\) 3.34709 3.34709i 0.110591 0.110591i
\(917\) 0.636218 0.636218i 0.0210098 0.0210098i
\(918\) 30.3701 30.3701i 1.00236 1.00236i
\(919\) 36.0000i 1.18753i −0.804638 0.593765i \(-0.797641\pi\)
0.804638 0.593765i \(-0.202359\pi\)
\(920\) 12.6332 12.6332i 0.416506 0.416506i
\(921\) 53.9752 1.77854
\(922\) 6.05013 6.05013i 0.199250 0.199250i
\(923\) −0.903526 2.24685i −0.0297399 0.0739560i
\(924\) 2.73350i 0.0899256i
\(925\) −26.3514 26.3514i −0.866429 0.866429i
\(926\) −18.0000 −0.591517
\(927\) 6.00000 0.197066
\(928\) 1.79110 + 1.79110i 0.0587957 + 0.0587957i
\(929\) 25.3141i 0.830528i −0.909701 0.415264i \(-0.863689\pi\)
0.909701 0.415264i \(-0.136311\pi\)
\(930\) 18.3139i 0.600536i
\(931\) 31.0418 + 31.0418i 1.01735 + 1.01735i
\(932\) 45.1662i 1.47947i
\(933\) 39.5330 + 39.5330i 1.29425 + 1.29425i
\(934\) −5.13819 5.13819i −0.168127 0.168127i
\(935\) 6.00000i 0.196221i
\(936\) −24.0336 59.7659i −0.785564 1.95351i
\(937\) 16.1003i 0.525972i −0.964800 0.262986i \(-0.915293\pi\)
0.964800 0.262986i \(-0.0847074\pi\)
\(938\) −1.48510 + 1.48510i −0.0484903 + 0.0484903i
\(939\) 21.4749 + 21.4749i 0.700808 + 0.700808i
\(940\) 14.9499 + 14.9499i 0.487611 + 0.487611i
\(941\) −16.1217 16.1217i −0.525552 0.525552i 0.393691 0.919243i \(-0.371198\pi\)
−0.919243 + 0.393691i \(0.871198\pi\)
\(942\) 48.5310 1.58123
\(943\) 0 0
\(944\) 30.9709 30.9709i 1.00802 1.00802i
\(945\) −2.26650 −0.0737292
\(946\) 21.8997i 0.712022i
\(947\) 40.9413 + 40.9413i 1.33041 + 1.33041i 0.904998 + 0.425415i \(0.139872\pi\)
0.425415 + 0.904998i \(0.360128\pi\)
\(948\) 47.2665 47.2665i 1.53514 1.53514i
\(949\) 5.10488 + 12.6946i 0.165712 + 0.412085i
\(950\) 25.2665 + 25.2665i 0.819753 + 0.819753i
\(951\) 66.8449 2.16760
\(952\) 1.89975i 0.0615712i
\(953\) 49.4327i 1.60128i −0.599143 0.800642i \(-0.704492\pi\)
0.599143 0.800642i \(-0.295508\pi\)
\(954\) 32.4560 + 32.4560i 1.05080 + 1.05080i
\(955\) −12.7279 + 12.7279i −0.411866 + 0.411866i
\(956\) 23.9707i 0.775269i
\(957\) 1.93288 + 1.93288i 0.0624810 + 0.0624810i
\(958\) −22.9499 −0.741477
\(959\) 3.15038 0.101731
\(960\) 24.4185i 0.788104i
\(961\) 13.0000 0.419355
\(962\) 18.6332 43.6988i 0.600760 1.40891i
\(963\) 60.8496 60.8496i 1.96085 1.96085i
\(964\) 25.4558i 0.819878i
\(965\) 9.00000 + 9.00000i 0.289720 + 0.289720i
\(966\) −4.31662 + 4.31662i −0.138885 + 0.138885i
\(967\) 7.36584 0.236870 0.118435 0.992962i \(-0.462212\pi\)
0.118435 + 0.992962i \(0.462212\pi\)
\(968\) 19.7990 0.636364
\(969\) −57.8410 −1.85812
\(970\) −8.48528 + 8.48528i −0.272446 + 0.272446i
\(971\) −15.7916 15.7916i −0.506775 0.506775i 0.406760 0.913535i \(-0.366659\pi\)
−0.913535 + 0.406760i \(0.866659\pi\)
\(972\) 8.63325 8.63325i 0.276912 0.276912i
\(973\) −0.554108 0.554108i −0.0177639 0.0177639i
\(974\) 41.3668i 1.32548i
\(975\) −17.2665 + 40.4935i −0.552971 + 1.29683i
\(976\) 16.0000 16.0000i 0.512148 0.512148i
\(977\) 9.97038i 0.318981i 0.987199 + 0.159490i \(0.0509851\pi\)
−0.987199 + 0.159490i \(0.949015\pi\)
\(978\) 53.1662i 1.70007i
\(979\) −19.8997 + 19.8997i −0.635999 + 0.635999i
\(980\) 9.82861 9.82861i 0.313963 0.313963i
\(981\) −14.8138 + 14.8138i −0.472968 + 0.472968i
\(982\) −29.9224 + 29.9224i −0.954861 + 0.954861i
\(983\) −51.5834 −1.64525 −0.822627 0.568582i \(-0.807492\pi\)
−0.822627 + 0.568582i \(0.807492\pi\)
\(984\) 0 0
\(985\) 4.05013i 0.129048i
\(986\) 1.34333 + 1.34333i 0.0427802 + 0.0427802i
\(987\) −5.10819 5.10819i −0.162595 0.162595i
\(988\) −17.8661 + 41.8997i −0.568397 + 1.33301i
\(989\) 34.5831 34.5831i 1.09968 1.09968i
\(990\) 17.8661i 0.567822i
\(991\) 20.9499 0.665495 0.332747 0.943016i \(-0.392024\pi\)
0.332747 + 0.943016i \(0.392024\pi\)
\(992\) −24.0000 −0.762001
\(993\) 23.1461i 0.734519i
\(994\) 0.212665i 0.00674533i
\(995\) 12.7279 + 12.7279i 0.403502 + 0.403502i
\(996\) 103.473 3.27866
\(997\) 40.9499 + 40.9499i 1.29690 + 1.29690i 0.930433 + 0.366463i \(0.119431\pi\)
0.366463 + 0.930433i \(0.380569\pi\)
\(998\) −24.6332 + 24.6332i −0.779752 + 0.779752i
\(999\) 94.3158 2.98402
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.2.p.a.181.4 yes 8
4.3 odd 2 832.2.p.a.753.2 8
13.12 even 2 inner 208.2.p.a.181.2 yes 8
16.3 odd 4 832.2.p.a.337.1 8
16.13 even 4 inner 208.2.p.a.77.4 yes 8
52.51 odd 2 832.2.p.a.753.1 8
208.51 odd 4 832.2.p.a.337.2 8
208.77 even 4 inner 208.2.p.a.77.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
208.2.p.a.77.2 8 208.77 even 4 inner
208.2.p.a.77.4 yes 8 16.13 even 4 inner
208.2.p.a.181.2 yes 8 13.12 even 2 inner
208.2.p.a.181.4 yes 8 1.1 even 1 trivial
832.2.p.a.337.1 8 16.3 odd 4
832.2.p.a.337.2 8 208.51 odd 4
832.2.p.a.753.1 8 52.51 odd 2
832.2.p.a.753.2 8 4.3 odd 2