Properties

Label 208.2.p.a
Level $208$
Weight $2$
Character orbit 208.p
Analytic conductor $1.661$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [208,2,Mod(77,208)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(208, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("208.77");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 208.p (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.66088836204\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.959512576.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 7x^{4} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{4} + \beta_1) q^{2} - \beta_{3} q^{3} - 2 q^{4} - \beta_{4} q^{5} + (\beta_{7} - \beta_{5} + \beta_{4} + \beta_1) q^{6} + (\beta_{7} + 2 \beta_{4} - \beta_1) q^{7} + ( - 2 \beta_{4} - 2 \beta_1) q^{8}+ \cdots + (2 \beta_{7} - 2 \beta_{5} + \cdots + 6 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} - 16 q^{4} + 8 q^{10} - 8 q^{12} - 8 q^{13} + 32 q^{16} + 24 q^{17} - 16 q^{22} - 44 q^{27} - 24 q^{29} + 8 q^{30} - 12 q^{35} + 24 q^{38} - 16 q^{40} + 32 q^{42} - 4 q^{43} + 16 q^{48} + 24 q^{49}+ \cdots - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 7x^{4} + 81 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{5} + \nu ) / 15 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{6} + 16\nu^{2} ) / 45 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{6} + 3\nu^{4} - \nu^{2} + 3 ) / 15 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -2\nu^{7} + 13\nu^{3} ) / 135 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{7} + 16\nu^{3} + 45\nu ) / 45 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -\nu^{6} - 3\nu^{4} - \nu^{2} - 3 ) / 15 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -\nu^{7} - 16\nu^{3} + 45\nu ) / 45 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{7} + \beta_{5} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{6} + \beta_{3} + 6\beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{7} + \beta_{5} + 3\beta_{4} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -5\beta_{6} + 5\beta_{3} - 2 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -\beta_{7} - \beta_{5} + 30\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -8\beta_{6} - 8\beta_{3} - 3\beta_{2} \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -13\beta_{7} + 13\beta_{5} - 96\beta_{4} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/208\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(-\beta_{2}\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
77.1
−1.52616 0.819051i
0.819051 + 1.52616i
1.52616 + 0.819051i
−0.819051 1.52616i
1.52616 0.819051i
−0.819051 + 1.52616i
−1.52616 + 0.819051i
0.819051 1.52616i
1.41421i −1.15831 1.15831i −2.00000 0.707107 + 0.707107i −1.63810 + 1.63810i −4.46653 2.82843i 0.316625i 1.00000 1.00000i
77.2 1.41421i 2.15831 + 2.15831i −2.00000 0.707107 + 0.707107i 3.05231 3.05231i 0.223888 2.82843i 6.31662i 1.00000 1.00000i
77.3 1.41421i −1.15831 1.15831i −2.00000 −0.707107 0.707107i 1.63810 1.63810i 4.46653 2.82843i 0.316625i 1.00000 1.00000i
77.4 1.41421i 2.15831 + 2.15831i −2.00000 −0.707107 0.707107i −3.05231 + 3.05231i −0.223888 2.82843i 6.31662i 1.00000 1.00000i
181.1 1.41421i −1.15831 + 1.15831i −2.00000 −0.707107 + 0.707107i 1.63810 + 1.63810i 4.46653 2.82843i 0.316625i 1.00000 + 1.00000i
181.2 1.41421i 2.15831 2.15831i −2.00000 −0.707107 + 0.707107i −3.05231 3.05231i −0.223888 2.82843i 6.31662i 1.00000 + 1.00000i
181.3 1.41421i −1.15831 + 1.15831i −2.00000 0.707107 0.707107i −1.63810 1.63810i −4.46653 2.82843i 0.316625i 1.00000 + 1.00000i
181.4 1.41421i 2.15831 2.15831i −2.00000 0.707107 0.707107i 3.05231 + 3.05231i 0.223888 2.82843i 6.31662i 1.00000 + 1.00000i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 77.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner
16.e even 4 1 inner
208.p even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 208.2.p.a 8
4.b odd 2 1 832.2.p.a 8
13.b even 2 1 inner 208.2.p.a 8
16.e even 4 1 inner 208.2.p.a 8
16.f odd 4 1 832.2.p.a 8
52.b odd 2 1 832.2.p.a 8
208.o odd 4 1 832.2.p.a 8
208.p even 4 1 inner 208.2.p.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
208.2.p.a 8 1.a even 1 1 trivial
208.2.p.a 8 13.b even 2 1 inner
208.2.p.a 8 16.e even 4 1 inner
208.2.p.a 8 208.p even 4 1 inner
832.2.p.a 8 4.b odd 2 1
832.2.p.a 8 16.f odd 4 1
832.2.p.a 8 52.b odd 2 1
832.2.p.a 8 208.o odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 2T_{3}^{3} + 2T_{3}^{2} + 10T_{3} + 25 \) acting on \(S_{2}^{\mathrm{new}}(208, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 2)^{4} \) Copy content Toggle raw display
$3$ \( (T^{4} - 2 T^{3} + 2 T^{2} + \cdots + 25)^{2} \) Copy content Toggle raw display
$5$ \( (T^{4} + 1)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} - 20 T^{2} + 1)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} + 16)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} + 4 T^{3} + \cdots + 169)^{2} \) Copy content Toggle raw display
$17$ \( (T - 3)^{8} \) Copy content Toggle raw display
$19$ \( T^{8} + 1592T^{4} + 16 \) Copy content Toggle raw display
$23$ \( (T^{4} + 40 T^{2} + 4)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} + 12 T^{3} + \cdots + 16)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 18)^{4} \) Copy content Toggle raw display
$37$ \( T^{8} + 7586 T^{4} + 390625 \) Copy content Toggle raw display
$41$ \( T^{8} \) Copy content Toggle raw display
$43$ \( (T^{4} + 2 T^{3} + \cdots + 2401)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} + 124 T^{2} + 1369)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} + 12 T^{3} + \cdots + 4900)^{2} \) Copy content Toggle raw display
$59$ \( T^{8} + 20792 T^{4} + 92236816 \) Copy content Toggle raw display
$61$ \( (T^{2} - 8 T + 32)^{4} \) Copy content Toggle raw display
$67$ \( (T^{4} + 1936)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} - 180 T^{2} + 81)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} - 188 T^{2} + 2500)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 2 T - 98)^{4} \) Copy content Toggle raw display
$83$ \( T^{8} + 82616 T^{4} + 6250000 \) Copy content Toggle raw display
$89$ \( (T^{2} - 198)^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} + 72)^{4} \) Copy content Toggle raw display
show more
show less