L(s) = 1 | − 5·3-s + 3·5-s − 9·7-s + 3·9-s − 80·11-s + 26·13-s − 15·15-s + 19·17-s + 84·19-s + 45·21-s + 196·23-s − 239·25-s − 40·27-s + 44·29-s − 86·31-s + 400·33-s − 27·35-s − 209·37-s − 130·39-s − 230·41-s − 287·43-s + 9·45-s + 435·47-s − 111·49-s − 95·51-s + 118·53-s − 240·55-s + ⋯ |
L(s) = 1 | − 0.962·3-s + 0.268·5-s − 0.485·7-s + 1/9·9-s − 2.19·11-s + 0.554·13-s − 0.258·15-s + 0.271·17-s + 1.01·19-s + 0.467·21-s + 1.77·23-s − 1.91·25-s − 0.285·27-s + 0.281·29-s − 0.498·31-s + 2.11·33-s − 0.130·35-s − 0.928·37-s − 0.533·39-s − 0.876·41-s − 1.01·43-s + 0.0298·45-s + 1.35·47-s − 0.323·49-s − 0.260·51-s + 0.305·53-s − 0.588·55-s + ⋯ |
Λ(s)=(=(692224s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(692224s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
692224
= 212⋅132
|
Sign: |
1
|
Analytic conductor: |
2409.78 |
Root analytic conductor: |
7.00639 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 692224, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 13 | C1 | (1−pT)2 |
good | 3 | D4 | 1+5T+22T2+5p3T3+p6T4 |
| 5 | D4 | 1−3T+248T2−3p3T3+p6T4 |
| 7 | D4 | 1+9T+192T2+9p3T3+p6T4 |
| 11 | D4 | 1+80T+3650T2+80p3T3+p6T4 |
| 17 | D4 | 1−19T+8688T2−19p3T3+p6T4 |
| 19 | D4 | 1−84T+11130T2−84p3T3+p6T4 |
| 23 | D4 | 1−196T+33326T2−196p3T3+p6T4 |
| 29 | D4 | 1−44T+10094T2−44p3T3+p6T4 |
| 31 | D4 | 1+86T+56518T2+86p3T3+p6T4 |
| 37 | D4 | 1+209T+112120T2+209p3T3+p6T4 |
| 41 | D4 | 1+230T+149010T2+230p3T3+p6T4 |
| 43 | D4 | 1+287T+92698T2+287p3T3+p6T4 |
| 47 | D4 | 1−435T+192728T2−435p3T3+p6T4 |
| 53 | D4 | 1−118T+297410T2−118p3T3+p6T4 |
| 59 | D4 | 1−368T+379266T2−368p3T3+p6T4 |
| 61 | D4 | 1−1058T+580378T2−1058p3T3+p6T4 |
| 67 | D4 | 1+68T+373930T2+68p3T3+p6T4 |
| 71 | D4 | 1+131T+493328T2+131p3T3+p6T4 |
| 73 | D4 | 1−456T+542718T2−456p3T3+p6T4 |
| 79 | D4 | 1+1008T+1233294T2+1008p3T3+p6T4 |
| 83 | D4 | 1+1958T+1961238T2+1958p3T3+p6T4 |
| 89 | D4 | 1+720T+899726T2+720p3T3+p6T4 |
| 97 | D4 | 1+928T+943870T2+928p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.813278967619206055679723237484, −9.319499284172354490094845639702, −8.690575745351321752582709298952, −8.331002260396050721010931764949, −7.935250529032507360428747065525, −7.27826445201795444998474985548, −7.11145528861906989029965312862, −6.58508725825674101626681817323, −5.89484740307466743700789038238, −5.50580407107914811657684156438, −5.23980109933732563050668266044, −5.16052919469470520776141001360, −4.06525882184495625362183936423, −3.70945114684107574543167233522, −2.81311815052099493056604838131, −2.74366042504932949051645542020, −1.74628020280605270243765824030, −1.05238160253304729636769076051, 0, 0,
1.05238160253304729636769076051, 1.74628020280605270243765824030, 2.74366042504932949051645542020, 2.81311815052099493056604838131, 3.70945114684107574543167233522, 4.06525882184495625362183936423, 5.16052919469470520776141001360, 5.23980109933732563050668266044, 5.50580407107914811657684156438, 5.89484740307466743700789038238, 6.58508725825674101626681817323, 7.11145528861906989029965312862, 7.27826445201795444998474985548, 7.935250529032507360428747065525, 8.331002260396050721010931764949, 8.690575745351321752582709298952, 9.319499284172354490094845639702, 9.813278967619206055679723237484