Properties

Label 832.4.a.s
Level $832$
Weight $4$
Character orbit 832.a
Self dual yes
Analytic conductor $49.090$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [832,4,Mod(1,832)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(832, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("832.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 832.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.0895891248\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 3 \beta - 1) q^{3} + (\beta + 1) q^{5} + ( - 11 \beta + 1) q^{7} + (15 \beta + 10) q^{9} + (12 \beta - 46) q^{11} + 13 q^{13} + ( - 7 \beta - 13) q^{15} + (17 \beta + 1) q^{17} + ( - 32 \beta + 58) q^{19}+ \cdots + ( - 390 \beta + 260) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 5 q^{3} + 3 q^{5} - 9 q^{7} + 35 q^{9} - 80 q^{11} + 26 q^{13} - 33 q^{15} + 19 q^{17} + 84 q^{19} + 303 q^{21} + 196 q^{23} - 237 q^{25} - 335 q^{27} + 44 q^{29} - 86 q^{31} - 106 q^{33} - 107 q^{35}+ \cdots + 130 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.56155
−1.56155
0 −8.68466 0 3.56155 0 −27.1771 0 48.4233 0
1.2 0 3.68466 0 −0.561553 0 18.1771 0 −13.4233 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 832.4.a.s 2
4.b odd 2 1 832.4.a.z 2
8.b even 2 1 13.4.a.b 2
8.d odd 2 1 208.4.a.h 2
24.f even 2 1 1872.4.a.bb 2
24.h odd 2 1 117.4.a.d 2
40.f even 2 1 325.4.a.f 2
40.i odd 4 2 325.4.b.e 4
56.h odd 2 1 637.4.a.b 2
88.b odd 2 1 1573.4.a.b 2
104.e even 2 1 169.4.a.g 2
104.j odd 4 2 169.4.b.f 4
104.r even 6 2 169.4.c.g 4
104.s even 6 2 169.4.c.j 4
104.x odd 12 4 169.4.e.f 8
312.b odd 2 1 1521.4.a.r 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
13.4.a.b 2 8.b even 2 1
117.4.a.d 2 24.h odd 2 1
169.4.a.g 2 104.e even 2 1
169.4.b.f 4 104.j odd 4 2
169.4.c.g 4 104.r even 6 2
169.4.c.j 4 104.s even 6 2
169.4.e.f 8 104.x odd 12 4
208.4.a.h 2 8.d odd 2 1
325.4.a.f 2 40.f even 2 1
325.4.b.e 4 40.i odd 4 2
637.4.a.b 2 56.h odd 2 1
832.4.a.s 2 1.a even 1 1 trivial
832.4.a.z 2 4.b odd 2 1
1521.4.a.r 2 312.b odd 2 1
1573.4.a.b 2 88.b odd 2 1
1872.4.a.bb 2 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(832))\):

\( T_{3}^{2} + 5T_{3} - 32 \) Copy content Toggle raw display
\( T_{5}^{2} - 3T_{5} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 5T - 32 \) Copy content Toggle raw display
$5$ \( T^{2} - 3T - 2 \) Copy content Toggle raw display
$7$ \( T^{2} + 9T - 494 \) Copy content Toggle raw display
$11$ \( T^{2} + 80T + 988 \) Copy content Toggle raw display
$13$ \( (T - 13)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 19T - 1138 \) Copy content Toggle raw display
$19$ \( T^{2} - 84T - 2588 \) Copy content Toggle raw display
$23$ \( T^{2} - 196T + 8992 \) Copy content Toggle raw display
$29$ \( T^{2} - 44T - 38684 \) Copy content Toggle raw display
$31$ \( T^{2} + 86T - 3064 \) Copy content Toggle raw display
$37$ \( T^{2} + 209T + 10814 \) Copy content Toggle raw display
$41$ \( T^{2} + 230T + 11168 \) Copy content Toggle raw display
$43$ \( T^{2} + 287T - 66316 \) Copy content Toggle raw display
$47$ \( T^{2} - 435T - 14918 \) Copy content Toggle raw display
$53$ \( T^{2} - 118T - 344 \) Copy content Toggle raw display
$59$ \( T^{2} - 368T - 31492 \) Copy content Toggle raw display
$61$ \( T^{2} - 1058 T + 126416 \) Copy content Toggle raw display
$67$ \( T^{2} + 68T - 227596 \) Copy content Toggle raw display
$71$ \( T^{2} + 131T - 222494 \) Copy content Toggle raw display
$73$ \( T^{2} - 456T - 235316 \) Copy content Toggle raw display
$79$ \( T^{2} + 1008 T + 247216 \) Copy content Toggle raw display
$83$ \( T^{2} + 1958 T + 817664 \) Copy content Toggle raw display
$89$ \( T^{2} + 720T - 510212 \) Copy content Toggle raw display
$97$ \( T^{2} + 928T - 881476 \) Copy content Toggle raw display
show more
show less