Properties

Label 832.4.a.s
Level 832832
Weight 44
Character orbit 832.a
Self dual yes
Analytic conductor 49.09049.090
Analytic rank 11
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [832,4,Mod(1,832)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(832, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("832.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 832=2613 832 = 2^{6} \cdot 13
Weight: k k == 4 4
Character orbit: [χ][\chi] == 832.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 49.089589124849.0895891248
Analytic rank: 11
Dimension: 22
Coefficient field: Q(17)\Q(\sqrt{17})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x4 x^{2} - x - 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 13)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=12(1+17)\beta = \frac{1}{2}(1 + \sqrt{17}). We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(3β1)q3+(β+1)q5+(11β+1)q7+(15β+10)q9+(12β46)q11+13q13+(7β13)q15+(17β+1)q17+(32β+58)q19++(390β+260)q99+O(q100) q + ( - 3 \beta - 1) q^{3} + (\beta + 1) q^{5} + ( - 11 \beta + 1) q^{7} + (15 \beta + 10) q^{9} + (12 \beta - 46) q^{11} + 13 q^{13} + ( - 7 \beta - 13) q^{15} + (17 \beta + 1) q^{17} + ( - 32 \beta + 58) q^{19}+ \cdots + ( - 390 \beta + 260) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q5q3+3q59q7+35q980q11+26q1333q15+19q17+84q19+303q21+196q23237q25335q27+44q2986q31106q33107q35++130q99+O(q100) 2 q - 5 q^{3} + 3 q^{5} - 9 q^{7} + 35 q^{9} - 80 q^{11} + 26 q^{13} - 33 q^{15} + 19 q^{17} + 84 q^{19} + 303 q^{21} + 196 q^{23} - 237 q^{25} - 335 q^{27} + 44 q^{29} - 86 q^{31} - 106 q^{33} - 107 q^{35}+ \cdots + 130 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
2.56155
−1.56155
0 −8.68466 0 3.56155 0 −27.1771 0 48.4233 0
1.2 0 3.68466 0 −0.561553 0 18.1771 0 −13.4233 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
1313 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 832.4.a.s 2
4.b odd 2 1 832.4.a.z 2
8.b even 2 1 13.4.a.b 2
8.d odd 2 1 208.4.a.h 2
24.f even 2 1 1872.4.a.bb 2
24.h odd 2 1 117.4.a.d 2
40.f even 2 1 325.4.a.f 2
40.i odd 4 2 325.4.b.e 4
56.h odd 2 1 637.4.a.b 2
88.b odd 2 1 1573.4.a.b 2
104.e even 2 1 169.4.a.g 2
104.j odd 4 2 169.4.b.f 4
104.r even 6 2 169.4.c.g 4
104.s even 6 2 169.4.c.j 4
104.x odd 12 4 169.4.e.f 8
312.b odd 2 1 1521.4.a.r 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
13.4.a.b 2 8.b even 2 1
117.4.a.d 2 24.h odd 2 1
169.4.a.g 2 104.e even 2 1
169.4.b.f 4 104.j odd 4 2
169.4.c.g 4 104.r even 6 2
169.4.c.j 4 104.s even 6 2
169.4.e.f 8 104.x odd 12 4
208.4.a.h 2 8.d odd 2 1
325.4.a.f 2 40.f even 2 1
325.4.b.e 4 40.i odd 4 2
637.4.a.b 2 56.h odd 2 1
832.4.a.s 2 1.a even 1 1 trivial
832.4.a.z 2 4.b odd 2 1
1521.4.a.r 2 312.b odd 2 1
1573.4.a.b 2 88.b odd 2 1
1872.4.a.bb 2 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(832))S_{4}^{\mathrm{new}}(\Gamma_0(832)):

T32+5T332 T_{3}^{2} + 5T_{3} - 32 Copy content Toggle raw display
T523T52 T_{5}^{2} - 3T_{5} - 2 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+5T32 T^{2} + 5T - 32 Copy content Toggle raw display
55 T23T2 T^{2} - 3T - 2 Copy content Toggle raw display
77 T2+9T494 T^{2} + 9T - 494 Copy content Toggle raw display
1111 T2+80T+988 T^{2} + 80T + 988 Copy content Toggle raw display
1313 (T13)2 (T - 13)^{2} Copy content Toggle raw display
1717 T219T1138 T^{2} - 19T - 1138 Copy content Toggle raw display
1919 T284T2588 T^{2} - 84T - 2588 Copy content Toggle raw display
2323 T2196T+8992 T^{2} - 196T + 8992 Copy content Toggle raw display
2929 T244T38684 T^{2} - 44T - 38684 Copy content Toggle raw display
3131 T2+86T3064 T^{2} + 86T - 3064 Copy content Toggle raw display
3737 T2+209T+10814 T^{2} + 209T + 10814 Copy content Toggle raw display
4141 T2+230T+11168 T^{2} + 230T + 11168 Copy content Toggle raw display
4343 T2+287T66316 T^{2} + 287T - 66316 Copy content Toggle raw display
4747 T2435T14918 T^{2} - 435T - 14918 Copy content Toggle raw display
5353 T2118T344 T^{2} - 118T - 344 Copy content Toggle raw display
5959 T2368T31492 T^{2} - 368T - 31492 Copy content Toggle raw display
6161 T21058T+126416 T^{2} - 1058 T + 126416 Copy content Toggle raw display
6767 T2+68T227596 T^{2} + 68T - 227596 Copy content Toggle raw display
7171 T2+131T222494 T^{2} + 131T - 222494 Copy content Toggle raw display
7373 T2456T235316 T^{2} - 456T - 235316 Copy content Toggle raw display
7979 T2+1008T+247216 T^{2} + 1008 T + 247216 Copy content Toggle raw display
8383 T2+1958T+817664 T^{2} + 1958 T + 817664 Copy content Toggle raw display
8989 T2+720T510212 T^{2} + 720T - 510212 Copy content Toggle raw display
9797 T2+928T881476 T^{2} + 928T - 881476 Copy content Toggle raw display
show more
show less