L(s) = 1 | + 3.68·3-s − 0.561·5-s + 18.1·7-s − 13.4·9-s − 64.7·11-s + 13·13-s − 2.06·15-s − 25.5·17-s + 107.·19-s + 66.9·21-s + 73.2·23-s − 124.·25-s − 148.·27-s − 175.·29-s − 113.·31-s − 238.·33-s − 10.2·35-s − 114.·37-s + 47.9·39-s − 69.6·41-s − 438.·43-s + 7.53·45-s − 31.9·47-s − 12.5·49-s − 94.1·51-s − 2.84·53-s + 36.3·55-s + ⋯ |
L(s) = 1 | + 0.709·3-s − 0.0502·5-s + 0.981·7-s − 0.497·9-s − 1.77·11-s + 0.277·13-s − 0.0356·15-s − 0.364·17-s + 1.30·19-s + 0.695·21-s + 0.664·23-s − 0.997·25-s − 1.06·27-s − 1.12·29-s − 0.655·31-s − 1.25·33-s − 0.0492·35-s − 0.510·37-s + 0.196·39-s − 0.265·41-s − 1.55·43-s + 0.0249·45-s − 0.0991·47-s − 0.0367·49-s − 0.258·51-s − 0.00737·53-s + 0.0891·55-s + ⋯ |
Λ(s)=(=(832s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(832s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1−13T |
good | 3 | 1−3.68T+27T2 |
| 5 | 1+0.561T+125T2 |
| 7 | 1−18.1T+343T2 |
| 11 | 1+64.7T+1.33e3T2 |
| 17 | 1+25.5T+4.91e3T2 |
| 19 | 1−107.T+6.85e3T2 |
| 23 | 1−73.2T+1.21e4T2 |
| 29 | 1+175.T+2.43e4T2 |
| 31 | 1+113.T+2.97e4T2 |
| 37 | 1+114.T+5.06e4T2 |
| 41 | 1+69.6T+6.89e4T2 |
| 43 | 1+438.T+7.95e4T2 |
| 47 | 1+31.9T+1.03e5T2 |
| 53 | 1+2.84T+1.48e5T2 |
| 59 | 1+71.6T+2.05e5T2 |
| 61 | 1−920.T+2.26e5T2 |
| 67 | 1−444.T+3.00e5T2 |
| 71 | 1+541.T+3.57e5T2 |
| 73 | 1−764.T+3.89e5T2 |
| 79 | 1+421.T+4.93e5T2 |
| 83 | 1+603.T+5.71e5T2 |
| 89 | 1+1.15e3T+7.04e5T2 |
| 97 | 1−583.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.319499284172354490094845639702, −8.331002260396050721010931764949, −7.935250529032507360428747065525, −7.11145528861906989029965312862, −5.50580407107914811657684156438, −5.16052919469470520776141001360, −3.70945114684107574543167233522, −2.74366042504932949051645542020, −1.74628020280605270243765824030, 0,
1.74628020280605270243765824030, 2.74366042504932949051645542020, 3.70945114684107574543167233522, 5.16052919469470520776141001360, 5.50580407107914811657684156438, 7.11145528861906989029965312862, 7.935250529032507360428747065525, 8.331002260396050721010931764949, 9.319499284172354490094845639702