L(s) = 1 | + 3.68·3-s − 0.561·5-s + 18.1·7-s − 13.4·9-s − 64.7·11-s + 13·13-s − 2.06·15-s − 25.5·17-s + 107.·19-s + 66.9·21-s + 73.2·23-s − 124.·25-s − 148.·27-s − 175.·29-s − 113.·31-s − 238.·33-s − 10.2·35-s − 114.·37-s + 47.9·39-s − 69.6·41-s − 438.·43-s + 7.53·45-s − 31.9·47-s − 12.5·49-s − 94.1·51-s − 2.84·53-s + 36.3·55-s + ⋯ |
L(s) = 1 | + 0.709·3-s − 0.0502·5-s + 0.981·7-s − 0.497·9-s − 1.77·11-s + 0.277·13-s − 0.0356·15-s − 0.364·17-s + 1.30·19-s + 0.695·21-s + 0.664·23-s − 0.997·25-s − 1.06·27-s − 1.12·29-s − 0.655·31-s − 1.25·33-s − 0.0492·35-s − 0.510·37-s + 0.196·39-s − 0.265·41-s − 1.55·43-s + 0.0249·45-s − 0.0991·47-s − 0.0367·49-s − 0.258·51-s − 0.00737·53-s + 0.0891·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 - 13T \) |
good | 3 | \( 1 - 3.68T + 27T^{2} \) |
| 5 | \( 1 + 0.561T + 125T^{2} \) |
| 7 | \( 1 - 18.1T + 343T^{2} \) |
| 11 | \( 1 + 64.7T + 1.33e3T^{2} \) |
| 17 | \( 1 + 25.5T + 4.91e3T^{2} \) |
| 19 | \( 1 - 107.T + 6.85e3T^{2} \) |
| 23 | \( 1 - 73.2T + 1.21e4T^{2} \) |
| 29 | \( 1 + 175.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 113.T + 2.97e4T^{2} \) |
| 37 | \( 1 + 114.T + 5.06e4T^{2} \) |
| 41 | \( 1 + 69.6T + 6.89e4T^{2} \) |
| 43 | \( 1 + 438.T + 7.95e4T^{2} \) |
| 47 | \( 1 + 31.9T + 1.03e5T^{2} \) |
| 53 | \( 1 + 2.84T + 1.48e5T^{2} \) |
| 59 | \( 1 + 71.6T + 2.05e5T^{2} \) |
| 61 | \( 1 - 920.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 444.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 541.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 764.T + 3.89e5T^{2} \) |
| 79 | \( 1 + 421.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 603.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 1.15e3T + 7.04e5T^{2} \) |
| 97 | \( 1 - 583.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.319499284172354490094845639702, −8.331002260396050721010931764949, −7.935250529032507360428747065525, −7.11145528861906989029965312862, −5.50580407107914811657684156438, −5.16052919469470520776141001360, −3.70945114684107574543167233522, −2.74366042504932949051645542020, −1.74628020280605270243765824030, 0,
1.74628020280605270243765824030, 2.74366042504932949051645542020, 3.70945114684107574543167233522, 5.16052919469470520776141001360, 5.50580407107914811657684156438, 7.11145528861906989029965312862, 7.935250529032507360428747065525, 8.331002260396050721010931764949, 9.319499284172354490094845639702