Properties

Label 2-8325-1.1-c1-0-135
Degree $2$
Conductor $8325$
Sign $-1$
Analytic cond. $66.4754$
Root an. cond. $8.15324$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.61·2-s + 0.618·4-s − 3.32·7-s + 2.23·8-s − 1.14·11-s + 1.85·13-s + 5.38·14-s − 4.85·16-s + 2.67·17-s − 1.82·19-s + 1.85·22-s − 0.420·23-s − 3.00·26-s − 2.05·28-s + 10.0·29-s − 6.00·31-s + 3.38·32-s − 4.33·34-s − 37-s + 2.94·38-s + 4.14·41-s − 8.24·43-s − 0.710·44-s + 0.679·46-s − 11.7·47-s + 4.07·49-s + 1.14·52-s + ⋯
L(s)  = 1  − 1.14·2-s + 0.309·4-s − 1.25·7-s + 0.790·8-s − 0.346·11-s + 0.515·13-s + 1.43·14-s − 1.21·16-s + 0.649·17-s − 0.417·19-s + 0.396·22-s − 0.0876·23-s − 0.589·26-s − 0.388·28-s + 1.86·29-s − 1.07·31-s + 0.597·32-s − 0.743·34-s − 0.164·37-s + 0.477·38-s + 0.646·41-s − 1.25·43-s − 0.107·44-s + 0.100·46-s − 1.70·47-s + 0.582·49-s + 0.159·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8325 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8325\)    =    \(3^{2} \cdot 5^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(66.4754\)
Root analytic conductor: \(8.15324\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8325,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
37 \( 1 + T \)
good2 \( 1 + 1.61T + 2T^{2} \)
7 \( 1 + 3.32T + 7T^{2} \)
11 \( 1 + 1.14T + 11T^{2} \)
13 \( 1 - 1.85T + 13T^{2} \)
17 \( 1 - 2.67T + 17T^{2} \)
19 \( 1 + 1.82T + 19T^{2} \)
23 \( 1 + 0.420T + 23T^{2} \)
29 \( 1 - 10.0T + 29T^{2} \)
31 \( 1 + 6.00T + 31T^{2} \)
41 \( 1 - 4.14T + 41T^{2} \)
43 \( 1 + 8.24T + 43T^{2} \)
47 \( 1 + 11.7T + 47T^{2} \)
53 \( 1 + 1.64T + 53T^{2} \)
59 \( 1 - 7.07T + 59T^{2} \)
61 \( 1 + 0.294T + 61T^{2} \)
67 \( 1 - 4.44T + 67T^{2} \)
71 \( 1 - 10.3T + 71T^{2} \)
73 \( 1 + 9.07T + 73T^{2} \)
79 \( 1 - 9.63T + 79T^{2} \)
83 \( 1 - 0.115T + 83T^{2} \)
89 \( 1 - 5.51T + 89T^{2} \)
97 \( 1 - 1.38T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.66107929343233983899936702970, −6.74445477723103625501911985115, −6.44754080284927227106542563556, −5.44649078699030278939977928747, −4.66642021525062687487650399778, −3.70714652302711933557214901330, −3.04743478881423332314246460637, −2.00440731005532945276369167414, −0.955352044294625566107567176805, 0, 0.955352044294625566107567176805, 2.00440731005532945276369167414, 3.04743478881423332314246460637, 3.70714652302711933557214901330, 4.66642021525062687487650399778, 5.44649078699030278939977928747, 6.44754080284927227106542563556, 6.74445477723103625501911985115, 7.66107929343233983899936702970

Graph of the $Z$-function along the critical line