Properties

Label 8325.2.a.bt
Level $8325$
Weight $2$
Character orbit 8325.a
Self dual yes
Analytic conductor $66.475$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8325,2,Mod(1,8325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8325.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8325 = 3^{2} \cdot 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.4754596827\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.4400.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 7x^{2} + 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 555)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} - 1) q^{2} + \beta_{2} q^{4} + ( - \beta_{3} - 2) q^{7} + (2 \beta_{2} + 1) q^{8} + ( - \beta_1 + 1) q^{11} + (\beta_{3} - \beta_{2} + \beta_1 - 1) q^{13} + (2 \beta_{2} + \beta_1 + 2) q^{14}+ \cdots + ( - 4 \beta_1 + 2) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 2 q^{4} - 8 q^{7} + 4 q^{11} - 2 q^{13} + 4 q^{14} - 6 q^{16} - 2 q^{17} - 4 q^{19} - 2 q^{22} + 6 q^{26} + 4 q^{28} + 12 q^{29} - 2 q^{31} + 18 q^{32} + 6 q^{34} - 4 q^{37} + 2 q^{38} + 26 q^{41}+ \cdots + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 7x^{2} + 11 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 4\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 4\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.14896
−2.14896
−1.54336
1.54336
−1.61803 0 0.618034 0 0 −3.32813 2.23607 0 0
1.2 −1.61803 0 0.618034 0 0 −0.671869 2.23607 0 0
1.3 0.618034 0 −1.61803 0 0 −4.49721 −2.23607 0 0
1.4 0.618034 0 −1.61803 0 0 0.497212 −2.23607 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(37\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8325.2.a.bt 4
3.b odd 2 1 2775.2.a.y 4
5.b even 2 1 8325.2.a.bw 4
5.c odd 4 2 1665.2.c.d 8
15.d odd 2 1 2775.2.a.w 4
15.e even 4 2 555.2.c.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
555.2.c.b 8 15.e even 4 2
1665.2.c.d 8 5.c odd 4 2
2775.2.a.w 4 15.d odd 2 1
2775.2.a.y 4 3.b odd 2 1
8325.2.a.bt 4 1.a even 1 1 trivial
8325.2.a.bw 4 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8325))\):

\( T_{2}^{2} + T_{2} - 1 \) Copy content Toggle raw display
\( T_{7}^{4} + 8T_{7}^{3} + 16T_{7}^{2} - 5 \) Copy content Toggle raw display
\( T_{11}^{4} - 4T_{11}^{3} - T_{11}^{2} + 10T_{11} + 5 \) Copy content Toggle raw display
\( T_{13}^{4} + 2T_{13}^{3} - 14T_{13}^{2} + 10T_{13} + 5 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 8 T^{3} + \cdots - 5 \) Copy content Toggle raw display
$11$ \( T^{4} - 4 T^{3} + \cdots + 5 \) Copy content Toggle raw display
$13$ \( T^{4} + 2 T^{3} + \cdots + 5 \) Copy content Toggle raw display
$17$ \( T^{4} + 2 T^{3} + \cdots + 145 \) Copy content Toggle raw display
$19$ \( T^{4} + 4 T^{3} + \cdots - 5 \) Copy content Toggle raw display
$23$ \( T^{4} - 42 T^{2} + \cdots + 41 \) Copy content Toggle raw display
$29$ \( T^{4} - 12 T^{3} + \cdots - 49 \) Copy content Toggle raw display
$31$ \( T^{4} + 2 T^{3} + \cdots + 59 \) Copy content Toggle raw display
$37$ \( (T + 1)^{4} \) Copy content Toggle raw display
$41$ \( T^{4} - 26 T^{3} + \cdots + 1289 \) Copy content Toggle raw display
$43$ \( T^{4} + 6 T^{3} + \cdots + 5 \) Copy content Toggle raw display
$47$ \( T^{4} + 6 T^{3} + \cdots - 1 \) Copy content Toggle raw display
$53$ \( T^{4} - 68T^{2} + 176 \) Copy content Toggle raw display
$59$ \( T^{4} - 12 T^{3} + \cdots - 1949 \) Copy content Toggle raw display
$61$ \( T^{4} + 6 T^{3} + \cdots - 25 \) Copy content Toggle raw display
$67$ \( T^{4} + 8 T^{3} + \cdots + 655 \) Copy content Toggle raw display
$71$ \( T^{4} - 34 T^{3} + \cdots + 2801 \) Copy content Toggle raw display
$73$ \( T^{4} + 20 T^{3} + \cdots - 3625 \) Copy content Toggle raw display
$79$ \( T^{4} - 6 T^{3} + \cdots - 6245 \) Copy content Toggle raw display
$83$ \( T^{4} - 2 T^{3} + \cdots + 11 \) Copy content Toggle raw display
$89$ \( T^{4} - 24 T^{3} + \cdots - 725 \) Copy content Toggle raw display
$97$ \( T^{4} - 14 T^{3} + \cdots - 631 \) Copy content Toggle raw display
show more
show less