Properties

Label 8325.2.a.bt
Level 83258325
Weight 22
Character orbit 8325.a
Self dual yes
Analytic conductor 66.47566.475
Analytic rank 11
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8325,2,Mod(1,8325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8325.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 8325=325237 8325 = 3^{2} \cdot 5^{2} \cdot 37
Weight: k k == 2 2
Character orbit: [χ][\chi] == 8325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 66.475459682766.4754596827
Analytic rank: 11
Dimension: 44
Coefficient field: 4.4.4400.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x47x2+11 x^{4} - 7x^{2} + 11 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 555)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β21)q2+β2q4+(β32)q7+(2β2+1)q8+(β1+1)q11+(β3β2+β11)q13+(2β2+β1+2)q14++(4β1+2)q98+O(q100) q + ( - \beta_{2} - 1) q^{2} + \beta_{2} q^{4} + ( - \beta_{3} - 2) q^{7} + (2 \beta_{2} + 1) q^{8} + ( - \beta_1 + 1) q^{11} + (\beta_{3} - \beta_{2} + \beta_1 - 1) q^{13} + (2 \beta_{2} + \beta_1 + 2) q^{14}+ \cdots + ( - 4 \beta_1 + 2) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q2q22q48q7+4q112q13+4q146q162q174q192q22+6q26+4q28+12q292q31+18q32+6q344q37+2q38+26q41++8q98+O(q100) 4 q - 2 q^{2} - 2 q^{4} - 8 q^{7} + 4 q^{11} - 2 q^{13} + 4 q^{14} - 6 q^{16} - 2 q^{17} - 4 q^{19} - 2 q^{22} + 6 q^{26} + 4 q^{28} + 12 q^{29} - 2 q^{31} + 18 q^{32} + 6 q^{34} - 4 q^{37} + 2 q^{38} + 26 q^{41}+ \cdots + 8 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x47x2+11 x^{4} - 7x^{2} + 11 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν24 \nu^{2} - 4 Copy content Toggle raw display
β3\beta_{3}== ν34ν \nu^{3} - 4\nu Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+4 \beta_{2} + 4 Copy content Toggle raw display
ν3\nu^{3}== β3+4β1 \beta_{3} + 4\beta_1 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
2.14896
−2.14896
−1.54336
1.54336
−1.61803 0 0.618034 0 0 −3.32813 2.23607 0 0
1.2 −1.61803 0 0.618034 0 0 −0.671869 2.23607 0 0
1.3 0.618034 0 −1.61803 0 0 −4.49721 −2.23607 0 0
1.4 0.618034 0 −1.61803 0 0 0.497212 −2.23607 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
55 1 -1
3737 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8325.2.a.bt 4
3.b odd 2 1 2775.2.a.y 4
5.b even 2 1 8325.2.a.bw 4
5.c odd 4 2 1665.2.c.d 8
15.d odd 2 1 2775.2.a.w 4
15.e even 4 2 555.2.c.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
555.2.c.b 8 15.e even 4 2
1665.2.c.d 8 5.c odd 4 2
2775.2.a.w 4 15.d odd 2 1
2775.2.a.y 4 3.b odd 2 1
8325.2.a.bt 4 1.a even 1 1 trivial
8325.2.a.bw 4 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(8325))S_{2}^{\mathrm{new}}(\Gamma_0(8325)):

T22+T21 T_{2}^{2} + T_{2} - 1 Copy content Toggle raw display
T74+8T73+16T725 T_{7}^{4} + 8T_{7}^{3} + 16T_{7}^{2} - 5 Copy content Toggle raw display
T1144T113T112+10T11+5 T_{11}^{4} - 4T_{11}^{3} - T_{11}^{2} + 10T_{11} + 5 Copy content Toggle raw display
T134+2T13314T132+10T13+5 T_{13}^{4} + 2T_{13}^{3} - 14T_{13}^{2} + 10T_{13} + 5 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+T1)2 (T^{2} + T - 1)^{2} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4+8T3+5 T^{4} + 8 T^{3} + \cdots - 5 Copy content Toggle raw display
1111 T44T3++5 T^{4} - 4 T^{3} + \cdots + 5 Copy content Toggle raw display
1313 T4+2T3++5 T^{4} + 2 T^{3} + \cdots + 5 Copy content Toggle raw display
1717 T4+2T3++145 T^{4} + 2 T^{3} + \cdots + 145 Copy content Toggle raw display
1919 T4+4T3+5 T^{4} + 4 T^{3} + \cdots - 5 Copy content Toggle raw display
2323 T442T2++41 T^{4} - 42 T^{2} + \cdots + 41 Copy content Toggle raw display
2929 T412T3+49 T^{4} - 12 T^{3} + \cdots - 49 Copy content Toggle raw display
3131 T4+2T3++59 T^{4} + 2 T^{3} + \cdots + 59 Copy content Toggle raw display
3737 (T+1)4 (T + 1)^{4} Copy content Toggle raw display
4141 T426T3++1289 T^{4} - 26 T^{3} + \cdots + 1289 Copy content Toggle raw display
4343 T4+6T3++5 T^{4} + 6 T^{3} + \cdots + 5 Copy content Toggle raw display
4747 T4+6T3+1 T^{4} + 6 T^{3} + \cdots - 1 Copy content Toggle raw display
5353 T468T2+176 T^{4} - 68T^{2} + 176 Copy content Toggle raw display
5959 T412T3+1949 T^{4} - 12 T^{3} + \cdots - 1949 Copy content Toggle raw display
6161 T4+6T3+25 T^{4} + 6 T^{3} + \cdots - 25 Copy content Toggle raw display
6767 T4+8T3++655 T^{4} + 8 T^{3} + \cdots + 655 Copy content Toggle raw display
7171 T434T3++2801 T^{4} - 34 T^{3} + \cdots + 2801 Copy content Toggle raw display
7373 T4+20T3+3625 T^{4} + 20 T^{3} + \cdots - 3625 Copy content Toggle raw display
7979 T46T3+6245 T^{4} - 6 T^{3} + \cdots - 6245 Copy content Toggle raw display
8383 T42T3++11 T^{4} - 2 T^{3} + \cdots + 11 Copy content Toggle raw display
8989 T424T3+725 T^{4} - 24 T^{3} + \cdots - 725 Copy content Toggle raw display
9797 T414T3+631 T^{4} - 14 T^{3} + \cdots - 631 Copy content Toggle raw display
show more
show less