L(s) = 1 | − 1.61·2-s + 0.618·4-s − 0.671·7-s + 2.23·8-s + 3.14·11-s − 5.09·13-s + 1.08·14-s − 4.85·16-s − 5.91·17-s − 0.179·19-s − 5.09·22-s + 4.89·23-s + 8.24·26-s − 0.415·28-s + 0.430·29-s − 1.70·31-s + 3.38·32-s + 9.57·34-s − 37-s + 0.289·38-s + 11.0·41-s + 3.00·43-s + 1.94·44-s − 7.91·46-s + 6.48·47-s − 6.54·49-s − 3.14·52-s + ⋯ |
L(s) = 1 | − 1.14·2-s + 0.309·4-s − 0.253·7-s + 0.790·8-s + 0.949·11-s − 1.41·13-s + 0.290·14-s − 1.21·16-s − 1.43·17-s − 0.0411·19-s − 1.08·22-s + 1.02·23-s + 1.61·26-s − 0.0784·28-s + 0.0800·29-s − 0.306·31-s + 0.597·32-s + 1.64·34-s − 0.164·37-s + 0.0470·38-s + 1.73·41-s + 0.458·43-s + 0.293·44-s − 1.16·46-s + 0.945·47-s − 0.935·49-s − 0.436·52-s + ⋯ |
Λ(s)=(=(8325s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(8325s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
| 37 | 1+T |
good | 2 | 1+1.61T+2T2 |
| 7 | 1+0.671T+7T2 |
| 11 | 1−3.14T+11T2 |
| 13 | 1+5.09T+13T2 |
| 17 | 1+5.91T+17T2 |
| 19 | 1+0.179T+19T2 |
| 23 | 1−4.89T+23T2 |
| 29 | 1−0.430T+29T2 |
| 31 | 1+1.70T+31T2 |
| 41 | 1−11.0T+41T2 |
| 43 | 1−3.00T+43T2 |
| 47 | 1−6.48T+47T2 |
| 53 | 1−1.64T+53T2 |
| 59 | 1−3.40T+59T2 |
| 61 | 1−4.00T+61T2 |
| 67 | 1+8.44T+67T2 |
| 71 | 1−4.41T+71T2 |
| 73 | 1+5.40T+73T2 |
| 79 | 1−9.01T+79T2 |
| 83 | 1+5.82T+83T2 |
| 89 | 1+2.45T+89T2 |
| 97 | 1+5.56T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.39368504863425106874441063504, −7.05405203660939284282549508926, −6.38830329081664251843882854642, −5.35559983459171870944437886993, −4.52790088424981524522941405532, −4.05930437803014184409804806386, −2.78179482729095516141510465548, −2.06099545097201836895494878665, −1.01124765138665277781201792426, 0,
1.01124765138665277781201792426, 2.06099545097201836895494878665, 2.78179482729095516141510465548, 4.05930437803014184409804806386, 4.52790088424981524522941405532, 5.35559983459171870944437886993, 6.38830329081664251843882854642, 7.05405203660939284282549508926, 7.39368504863425106874441063504