Properties

Label 2-8325-1.1-c1-0-12
Degree $2$
Conductor $8325$
Sign $1$
Analytic cond. $66.4754$
Root an. cond. $8.15324$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.15·2-s − 0.657·4-s − 4.20·7-s + 3.07·8-s + 2.64·11-s − 1.14·13-s + 4.86·14-s − 2.25·16-s − 6.14·17-s + 7.45·19-s − 3.06·22-s − 8.18·23-s + 1.32·26-s + 2.76·28-s − 0.834·29-s − 6.63·31-s − 3.54·32-s + 7.11·34-s + 37-s − 8.64·38-s − 2.15·41-s + 4.30·43-s − 1.73·44-s + 9.48·46-s + 0.113·47-s + 10.6·49-s + 0.749·52-s + ⋯
L(s)  = 1  − 0.819·2-s − 0.328·4-s − 1.58·7-s + 1.08·8-s + 0.796·11-s − 0.316·13-s + 1.30·14-s − 0.563·16-s − 1.48·17-s + 1.71·19-s − 0.652·22-s − 1.70·23-s + 0.259·26-s + 0.521·28-s − 0.154·29-s − 1.19·31-s − 0.627·32-s + 1.22·34-s + 0.164·37-s − 1.40·38-s − 0.336·41-s + 0.656·43-s − 0.261·44-s + 1.39·46-s + 0.0164·47-s + 1.52·49-s + 0.103·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8325 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8325\)    =    \(3^{2} \cdot 5^{2} \cdot 37\)
Sign: $1$
Analytic conductor: \(66.4754\)
Root analytic conductor: \(8.15324\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8325,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4180745874\)
\(L(\frac12)\) \(\approx\) \(0.4180745874\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
37 \( 1 - T \)
good2 \( 1 + 1.15T + 2T^{2} \)
7 \( 1 + 4.20T + 7T^{2} \)
11 \( 1 - 2.64T + 11T^{2} \)
13 \( 1 + 1.14T + 13T^{2} \)
17 \( 1 + 6.14T + 17T^{2} \)
19 \( 1 - 7.45T + 19T^{2} \)
23 \( 1 + 8.18T + 23T^{2} \)
29 \( 1 + 0.834T + 29T^{2} \)
31 \( 1 + 6.63T + 31T^{2} \)
41 \( 1 + 2.15T + 41T^{2} \)
43 \( 1 - 4.30T + 43T^{2} \)
47 \( 1 - 0.113T + 47T^{2} \)
53 \( 1 + 0.113T + 53T^{2} \)
59 \( 1 - 1.01T + 59T^{2} \)
61 \( 1 + 9.13T + 61T^{2} \)
67 \( 1 - 6.71T + 67T^{2} \)
71 \( 1 + 8.17T + 71T^{2} \)
73 \( 1 - 6.42T + 73T^{2} \)
79 \( 1 - 8.87T + 79T^{2} \)
83 \( 1 + 6.10T + 83T^{2} \)
89 \( 1 + 15.6T + 89T^{2} \)
97 \( 1 - 4.51T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.74152036503253281344373376872, −7.24806212791812637271326808719, −6.54065164305085647264349928478, −5.91009875134265848220080117719, −5.02413662725252626271883383695, −4.04717503510756839857654598391, −3.63368120054019994583029201894, −2.56487433994821021406536381901, −1.55384561992247352361379181340, −0.36611878474466385311268986142, 0.36611878474466385311268986142, 1.55384561992247352361379181340, 2.56487433994821021406536381901, 3.63368120054019994583029201894, 4.04717503510756839857654598391, 5.02413662725252626271883383695, 5.91009875134265848220080117719, 6.54065164305085647264349928478, 7.24806212791812637271326808719, 7.74152036503253281344373376872

Graph of the $Z$-function along the critical line