Properties

Label 8325.2.a.ca
Level 83258325
Weight 22
Character orbit 8325.a
Self dual yes
Analytic conductor 66.47566.475
Analytic rank 00
Dimension 55
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8325,2,Mod(1,8325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8325.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 8325=325237 8325 = 3^{2} \cdot 5^{2} \cdot 37
Weight: k k == 2 2
Character orbit: [χ][\chi] == 8325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 66.475459682766.4754596827
Analytic rank: 00
Dimension: 55
Coefficient field: 5.5.528933.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x52x46x3+4x2+7x1 x^{5} - 2x^{4} - 6x^{3} + 4x^{2} + 7x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 2775)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β3,β41,\beta_1,\beta_2,\beta_3,\beta_4 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ3q2+(β4β2+2)q4+(β4β3β1+1)q7+(β4β3β1)q8+(β3β2)q11+(β4+3)q13++(2β42β33β2+6)q98+O(q100) q - \beta_{3} q^{2} + (\beta_{4} - \beta_{2} + 2) q^{4} + (\beta_{4} - \beta_{3} - \beta_1 + 1) q^{7} + ( - \beta_{4} - \beta_{3} - \beta_1) q^{8} + (\beta_{3} - \beta_{2}) q^{11} + (\beta_{4} + 3) q^{13}+ \cdots + (2 \beta_{4} - 2 \beta_{3} - 3 \beta_{2} + \cdots - 6) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 5q2q2+8q43q8+q11+14q13+10q14+10q1611q17+10q1914q224q2313q26+3q285q293q3123q323q34+5q37+35q98+O(q100) 5 q - 2 q^{2} + 8 q^{4} - 3 q^{8} + q^{11} + 14 q^{13} + 10 q^{14} + 10 q^{16} - 11 q^{17} + 10 q^{19} - 14 q^{22} - 4 q^{23} - 13 q^{26} + 3 q^{28} - 5 q^{29} - 3 q^{31} - 23 q^{32} - 3 q^{34} + 5 q^{37}+ \cdots - 35 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x52x46x3+4x2+7x1 x^{5} - 2x^{4} - 6x^{3} + 4x^{2} + 7x - 1 : Copy content Toggle raw display

β1\beta_{1}== ν33ν2ν+4 \nu^{3} - 3\nu^{2} - \nu + 4 Copy content Toggle raw display
β2\beta_{2}== ν43ν32ν2+5ν1 \nu^{4} - 3\nu^{3} - 2\nu^{2} + 5\nu - 1 Copy content Toggle raw display
β3\beta_{3}== ν43ν33ν2+6ν+2 \nu^{4} - 3\nu^{3} - 3\nu^{2} + 6\nu + 2 Copy content Toggle raw display
β4\beta_{4}== ν42ν35ν2+2ν+3 \nu^{4} - 2\nu^{3} - 5\nu^{2} + 2\nu + 3 Copy content Toggle raw display
ν\nu== (β4+β2+β1)/2 ( -\beta_{4} + \beta_{2} + \beta_1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β42β3+3β2+β1+6)/2 ( -\beta_{4} - 2\beta_{3} + 3\beta_{2} + \beta _1 + 6 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== 2β43β3+5β2+3β1+5 -2\beta_{4} - 3\beta_{3} + 5\beta_{2} + 3\beta _1 + 5 Copy content Toggle raw display
ν4\nu^{4}== (9β422β3+33β2+15β1+44)/2 ( -9\beta_{4} - 22\beta_{3} + 33\beta_{2} + 15\beta _1 + 44 ) / 2 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0.134674
−1.50450
1.27987
3.26942
−1.17947
−2.74664 0 5.54401 0 0 −2.38589 −9.73410 0 0
1.2 −1.52233 0 0.317493 0 0 4.77701 2.56133 0 0
1.3 −1.15875 0 −0.657292 0 0 −4.20154 3.07914 0 0
1.4 1.03520 0 −0.928359 0 0 −1.11914 −3.03144 0 0
1.5 2.39252 0 3.72415 0 0 2.92955 4.12506 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
55 1 -1
3737 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8325.2.a.ca 5
3.b odd 2 1 2775.2.a.bc yes 5
5.b even 2 1 8325.2.a.cg 5
15.d odd 2 1 2775.2.a.z 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2775.2.a.z 5 15.d odd 2 1
2775.2.a.bc yes 5 3.b odd 2 1
8325.2.a.ca 5 1.a even 1 1 trivial
8325.2.a.cg 5 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(8325))S_{2}^{\mathrm{new}}(\Gamma_0(8325)):

T25+2T247T2313T22+6T2+12 T_{2}^{5} + 2T_{2}^{4} - 7T_{2}^{3} - 13T_{2}^{2} + 6T_{2} + 12 Copy content Toggle raw display
T7528T7315T72+157T7+157 T_{7}^{5} - 28T_{7}^{3} - 15T_{7}^{2} + 157T_{7} + 157 Copy content Toggle raw display
T115T11418T113+31T112+18T1112 T_{11}^{5} - T_{11}^{4} - 18T_{11}^{3} + 31T_{11}^{2} + 18T_{11} - 12 Copy content Toggle raw display
T13514T134+64T13391T13263T13+167 T_{13}^{5} - 14T_{13}^{4} + 64T_{13}^{3} - 91T_{13}^{2} - 63T_{13} + 167 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T5+2T4++12 T^{5} + 2 T^{4} + \cdots + 12 Copy content Toggle raw display
33 T5 T^{5} Copy content Toggle raw display
55 T5 T^{5} Copy content Toggle raw display
77 T528T3++157 T^{5} - 28 T^{3} + \cdots + 157 Copy content Toggle raw display
1111 T5T4+12 T^{5} - T^{4} + \cdots - 12 Copy content Toggle raw display
1313 T514T4++167 T^{5} - 14 T^{4} + \cdots + 167 Copy content Toggle raw display
1717 T5+11T4+48 T^{5} + 11 T^{4} + \cdots - 48 Copy content Toggle raw display
1919 T510T4+349 T^{5} - 10 T^{4} + \cdots - 349 Copy content Toggle raw display
2323 T5+4T4++516 T^{5} + 4 T^{4} + \cdots + 516 Copy content Toggle raw display
2929 T5+5T4+228 T^{5} + 5 T^{4} + \cdots - 228 Copy content Toggle raw display
3131 T5+3T4++2395 T^{5} + 3 T^{4} + \cdots + 2395 Copy content Toggle raw display
3737 (T1)5 (T - 1)^{5} Copy content Toggle raw display
4141 T58T4+60 T^{5} - 8 T^{4} + \cdots - 60 Copy content Toggle raw display
4343 T5T4++1161 T^{5} - T^{4} + \cdots + 1161 Copy content Toggle raw display
4747 T5+T4+48 T^{5} + T^{4} + \cdots - 48 Copy content Toggle raw display
5353 T5T4++48 T^{5} - T^{4} + \cdots + 48 Copy content Toggle raw display
5959 T521T4+108 T^{5} - 21 T^{4} + \cdots - 108 Copy content Toggle raw display
6161 T526T4++30839 T^{5} - 26 T^{4} + \cdots + 30839 Copy content Toggle raw display
6767 T521T4++911 T^{5} - 21 T^{4} + \cdots + 911 Copy content Toggle raw display
7171 T517T4+684 T^{5} - 17 T^{4} + \cdots - 684 Copy content Toggle raw display
7373 T525T4++4 T^{5} - 25 T^{4} + \cdots + 4 Copy content Toggle raw display
7979 T510T4+2384 T^{5} - 10 T^{4} + \cdots - 2384 Copy content Toggle raw display
8383 T53T4+17196 T^{5} - 3 T^{4} + \cdots - 17196 Copy content Toggle raw display
8989 T5+33T4+7284 T^{5} + 33 T^{4} + \cdots - 7284 Copy content Toggle raw display
9797 T516T4++5464 T^{5} - 16 T^{4} + \cdots + 5464 Copy content Toggle raw display
show more
show less