[N,k,chi] = [8325,2,Mod(1,8325)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8325, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("8325.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 , β 4 1,\beta_1,\beta_2,\beta_3,\beta_4 1 , β 1 , β 2 , β 3 , β 4 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 5 − 2 x 4 − 6 x 3 + 4 x 2 + 7 x − 1 x^{5} - 2x^{4} - 6x^{3} + 4x^{2} + 7x - 1 x 5 − 2 x 4 − 6 x 3 + 4 x 2 + 7 x − 1
x^5 - 2*x^4 - 6*x^3 + 4*x^2 + 7*x - 1
:
β 1 \beta_{1} β 1 = = =
ν 3 − 3 ν 2 − ν + 4 \nu^{3} - 3\nu^{2} - \nu + 4 ν 3 − 3 ν 2 − ν + 4
v^3 - 3*v^2 - v + 4
β 2 \beta_{2} β 2 = = =
ν 4 − 3 ν 3 − 2 ν 2 + 5 ν − 1 \nu^{4} - 3\nu^{3} - 2\nu^{2} + 5\nu - 1 ν 4 − 3 ν 3 − 2 ν 2 + 5 ν − 1
v^4 - 3*v^3 - 2*v^2 + 5*v - 1
β 3 \beta_{3} β 3 = = =
ν 4 − 3 ν 3 − 3 ν 2 + 6 ν + 2 \nu^{4} - 3\nu^{3} - 3\nu^{2} + 6\nu + 2 ν 4 − 3 ν 3 − 3 ν 2 + 6 ν + 2
v^4 - 3*v^3 - 3*v^2 + 6*v + 2
β 4 \beta_{4} β 4 = = =
ν 4 − 2 ν 3 − 5 ν 2 + 2 ν + 3 \nu^{4} - 2\nu^{3} - 5\nu^{2} + 2\nu + 3 ν 4 − 2 ν 3 − 5 ν 2 + 2 ν + 3
v^4 - 2*v^3 - 5*v^2 + 2*v + 3
ν \nu ν = = =
( − β 4 + β 2 + β 1 ) / 2 ( -\beta_{4} + \beta_{2} + \beta_1 ) / 2 ( − β 4 + β 2 + β 1 ) / 2
(-b4 + b2 + b1) / 2
ν 2 \nu^{2} ν 2 = = =
( − β 4 − 2 β 3 + 3 β 2 + β 1 + 6 ) / 2 ( -\beta_{4} - 2\beta_{3} + 3\beta_{2} + \beta _1 + 6 ) / 2 ( − β 4 − 2 β 3 + 3 β 2 + β 1 + 6 ) / 2
(-b4 - 2*b3 + 3*b2 + b1 + 6) / 2
ν 3 \nu^{3} ν 3 = = =
− 2 β 4 − 3 β 3 + 5 β 2 + 3 β 1 + 5 -2\beta_{4} - 3\beta_{3} + 5\beta_{2} + 3\beta _1 + 5 − 2 β 4 − 3 β 3 + 5 β 2 + 3 β 1 + 5
-2*b4 - 3*b3 + 5*b2 + 3*b1 + 5
ν 4 \nu^{4} ν 4 = = =
( − 9 β 4 − 22 β 3 + 33 β 2 + 15 β 1 + 44 ) / 2 ( -9\beta_{4} - 22\beta_{3} + 33\beta_{2} + 15\beta _1 + 44 ) / 2 ( − 9 β 4 − 2 2 β 3 + 3 3 β 2 + 1 5 β 1 + 4 4 ) / 2
(-9*b4 - 22*b3 + 33*b2 + 15*b1 + 44) / 2
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
p p p
Sign
3 3 3
− 1 -1 − 1
5 5 5
− 1 -1 − 1
37 37 3 7
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 8325 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(8325)) S 2 n e w ( Γ 0 ( 8 3 2 5 ) ) :
T 2 5 + 2 T 2 4 − 7 T 2 3 − 13 T 2 2 + 6 T 2 + 12 T_{2}^{5} + 2T_{2}^{4} - 7T_{2}^{3} - 13T_{2}^{2} + 6T_{2} + 12 T 2 5 + 2 T 2 4 − 7 T 2 3 − 1 3 T 2 2 + 6 T 2 + 1 2
T2^5 + 2*T2^4 - 7*T2^3 - 13*T2^2 + 6*T2 + 12
T 7 5 − 28 T 7 3 − 15 T 7 2 + 157 T 7 + 157 T_{7}^{5} - 28T_{7}^{3} - 15T_{7}^{2} + 157T_{7} + 157 T 7 5 − 2 8 T 7 3 − 1 5 T 7 2 + 1 5 7 T 7 + 1 5 7
T7^5 - 28*T7^3 - 15*T7^2 + 157*T7 + 157
T 11 5 − T 11 4 − 18 T 11 3 + 31 T 11 2 + 18 T 11 − 12 T_{11}^{5} - T_{11}^{4} - 18T_{11}^{3} + 31T_{11}^{2} + 18T_{11} - 12 T 1 1 5 − T 1 1 4 − 1 8 T 1 1 3 + 3 1 T 1 1 2 + 1 8 T 1 1 − 1 2
T11^5 - T11^4 - 18*T11^3 + 31*T11^2 + 18*T11 - 12
T 13 5 − 14 T 13 4 + 64 T 13 3 − 91 T 13 2 − 63 T 13 + 167 T_{13}^{5} - 14T_{13}^{4} + 64T_{13}^{3} - 91T_{13}^{2} - 63T_{13} + 167 T 1 3 5 − 1 4 T 1 3 4 + 6 4 T 1 3 3 − 9 1 T 1 3 2 − 6 3 T 1 3 + 1 6 7
T13^5 - 14*T13^4 + 64*T13^3 - 91*T13^2 - 63*T13 + 167
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 5 + 2 T 4 + ⋯ + 12 T^{5} + 2 T^{4} + \cdots + 12 T 5 + 2 T 4 + ⋯ + 1 2
T^5 + 2*T^4 - 7*T^3 - 13*T^2 + 6*T + 12
3 3 3
T 5 T^{5} T 5
T^5
5 5 5
T 5 T^{5} T 5
T^5
7 7 7
T 5 − 28 T 3 + ⋯ + 157 T^{5} - 28 T^{3} + \cdots + 157 T 5 − 2 8 T 3 + ⋯ + 1 5 7
T^5 - 28*T^3 - 15*T^2 + 157*T + 157
11 11 1 1
T 5 − T 4 + ⋯ − 12 T^{5} - T^{4} + \cdots - 12 T 5 − T 4 + ⋯ − 1 2
T^5 - T^4 - 18*T^3 + 31*T^2 + 18*T - 12
13 13 1 3
T 5 − 14 T 4 + ⋯ + 167 T^{5} - 14 T^{4} + \cdots + 167 T 5 − 1 4 T 4 + ⋯ + 1 6 7
T^5 - 14*T^4 + 64*T^3 - 91*T^2 - 63*T + 167
17 17 1 7
T 5 + 11 T 4 + ⋯ − 48 T^{5} + 11 T^{4} + \cdots - 48 T 5 + 1 1 T 4 + ⋯ − 4 8
T^5 + 11*T^4 + 34*T^3 + 19*T^2 - 48*T - 48
19 19 1 9
T 5 − 10 T 4 + ⋯ − 349 T^{5} - 10 T^{4} + \cdots - 349 T 5 − 1 0 T 4 + ⋯ − 3 4 9
T^5 - 10*T^4 + 6*T^3 + 117*T^2 - 105*T - 349
23 23 2 3
T 5 + 4 T 4 + ⋯ + 516 T^{5} + 4 T^{4} + \cdots + 516 T 5 + 4 T 4 + ⋯ + 5 1 6
T^5 + 4*T^4 - 51*T^3 - 109*T^2 + 294*T + 516
29 29 2 9
T 5 + 5 T 4 + ⋯ − 228 T^{5} + 5 T^{4} + \cdots - 228 T 5 + 5 T 4 + ⋯ − 2 2 8
T^5 + 5*T^4 - 45*T^3 - 317*T^2 - 504*T - 228
31 31 3 1
T 5 + 3 T 4 + ⋯ + 2395 T^{5} + 3 T^{4} + \cdots + 2395 T 5 + 3 T 4 + ⋯ + 2 3 9 5
T^5 + 3*T^4 - 82*T^3 - 366*T^2 + 481*T + 2395
37 37 3 7
( T − 1 ) 5 (T - 1)^{5} ( T − 1 ) 5
(T - 1)^5
41 41 4 1
T 5 − 8 T 4 + ⋯ − 60 T^{5} - 8 T^{4} + \cdots - 60 T 5 − 8 T 4 + ⋯ − 6 0
T^5 - 8*T^4 - 57*T^3 + 107*T^2 + 366*T - 60
43 43 4 3
T 5 − T 4 + ⋯ + 1161 T^{5} - T^{4} + \cdots + 1161 T 5 − T 4 + ⋯ + 1 1 6 1
T^5 - T^4 - 95*T^3 - 66*T^2 + 1512*T + 1161
47 47 4 7
T 5 + T 4 + ⋯ − 48 T^{5} + T^{4} + \cdots - 48 T 5 + T 4 + ⋯ − 4 8
T^5 + T^4 - 88*T^3 + 157*T^2 + 408*T - 48
53 53 5 3
T 5 − T 4 + ⋯ + 48 T^{5} - T^{4} + \cdots + 48 T 5 − T 4 + ⋯ + 4 8
T^5 - T^4 - 88*T^3 - 157*T^2 + 408*T + 48
59 59 5 9
T 5 − 21 T 4 + ⋯ − 108 T^{5} - 21 T^{4} + \cdots - 108 T 5 − 2 1 T 4 + ⋯ − 1 0 8
T^5 - 21*T^4 + 146*T^3 - 395*T^2 + 378*T - 108
61 61 6 1
T 5 − 26 T 4 + ⋯ + 30839 T^{5} - 26 T^{4} + \cdots + 30839 T 5 − 2 6 T 4 + ⋯ + 3 0 8 3 9
T^5 - 26*T^4 + 112*T^3 + 1805*T^2 - 16311*T + 30839
67 67 6 7
T 5 − 21 T 4 + ⋯ + 911 T^{5} - 21 T^{4} + \cdots + 911 T 5 − 2 1 T 4 + ⋯ + 9 1 1
T^5 - 21*T^4 + 141*T^3 - 252*T^2 - 476*T + 911
71 71 7 1
T 5 − 17 T 4 + ⋯ − 684 T^{5} - 17 T^{4} + \cdots - 684 T 5 − 1 7 T 4 + ⋯ − 6 8 4
T^5 - 17*T^4 - 26*T^3 + 1151*T^2 - 2706*T - 684
73 73 7 3
T 5 − 25 T 4 + ⋯ + 4 T^{5} - 25 T^{4} + \cdots + 4 T 5 − 2 5 T 4 + ⋯ + 4
T^5 - 25*T^4 + 198*T^3 - 493*T^2 - 80*T + 4
79 79 7 9
T 5 − 10 T 4 + ⋯ − 2384 T^{5} - 10 T^{4} + \cdots - 2384 T 5 − 1 0 T 4 + ⋯ − 2 3 8 4
T^5 - 10*T^4 - 35*T^3 + 469*T^2 - 352*T - 2384
83 83 8 3
T 5 − 3 T 4 + ⋯ − 17196 T^{5} - 3 T^{4} + \cdots - 17196 T 5 − 3 T 4 + ⋯ − 1 7 1 9 6
T^5 - 3*T^4 - 166*T^3 + 617*T^2 + 5058*T - 17196
89 89 8 9
T 5 + 33 T 4 + ⋯ − 7284 T^{5} + 33 T^{4} + \cdots - 7284 T 5 + 3 3 T 4 + ⋯ − 7 2 8 4
T^5 + 33*T^4 + 344*T^3 + 1093*T^2 - 1122*T - 7284
97 97 9 7
T 5 − 16 T 4 + ⋯ + 5464 T^{5} - 16 T^{4} + \cdots + 5464 T 5 − 1 6 T 4 + ⋯ + 5 4 6 4
T^5 - 16*T^4 - 51*T^3 + 1442*T^2 - 5624*T + 5464
show more
show less