Properties

Label 2-8325-1.1-c1-0-279
Degree $2$
Conductor $8325$
Sign $-1$
Analytic cond. $66.4754$
Root an. cond. $8.15324$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.58·2-s + 4.65·4-s − 0.947·7-s + 6.86·8-s − 4.90·11-s − 0.508·13-s − 2.44·14-s + 8.39·16-s − 4.98·17-s + 0.580·19-s − 12.6·22-s + 1.54·23-s − 1.31·26-s − 4.41·28-s − 9.55·29-s − 9.75·31-s + 7.92·32-s − 12.8·34-s − 37-s + 1.49·38-s + 0.960·41-s − 0.875·43-s − 22.8·44-s + 3.98·46-s + 8.16·47-s − 6.10·49-s − 2.36·52-s + ⋯
L(s)  = 1  + 1.82·2-s + 2.32·4-s − 0.358·7-s + 2.42·8-s − 1.47·11-s − 0.140·13-s − 0.653·14-s + 2.09·16-s − 1.20·17-s + 0.133·19-s − 2.69·22-s + 0.321·23-s − 0.257·26-s − 0.834·28-s − 1.77·29-s − 1.75·31-s + 1.40·32-s − 2.20·34-s − 0.164·37-s + 0.243·38-s + 0.150·41-s − 0.133·43-s − 3.44·44-s + 0.587·46-s + 1.19·47-s − 0.871·49-s − 0.328·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8325 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8325\)    =    \(3^{2} \cdot 5^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(66.4754\)
Root analytic conductor: \(8.15324\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8325,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
37 \( 1 + T \)
good2 \( 1 - 2.58T + 2T^{2} \)
7 \( 1 + 0.947T + 7T^{2} \)
11 \( 1 + 4.90T + 11T^{2} \)
13 \( 1 + 0.508T + 13T^{2} \)
17 \( 1 + 4.98T + 17T^{2} \)
19 \( 1 - 0.580T + 19T^{2} \)
23 \( 1 - 1.54T + 23T^{2} \)
29 \( 1 + 9.55T + 29T^{2} \)
31 \( 1 + 9.75T + 31T^{2} \)
41 \( 1 - 0.960T + 41T^{2} \)
43 \( 1 + 0.875T + 43T^{2} \)
47 \( 1 - 8.16T + 47T^{2} \)
53 \( 1 - 2.21T + 53T^{2} \)
59 \( 1 - 6.36T + 59T^{2} \)
61 \( 1 + 0.166T + 61T^{2} \)
67 \( 1 + 5.85T + 67T^{2} \)
71 \( 1 - 5.41T + 71T^{2} \)
73 \( 1 + 3.50T + 73T^{2} \)
79 \( 1 + 14.8T + 79T^{2} \)
83 \( 1 - 6.08T + 83T^{2} \)
89 \( 1 - 13.7T + 89T^{2} \)
97 \( 1 + 6.21T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.26657113470292593392223546398, −6.62869996311056989380659379008, −5.69499044664078178064863501644, −5.43566390147651387178069908543, −4.67151118083174044424440562990, −3.93248938191933883368365438910, −3.25789916019970985149241668522, −2.46577579663443202006489286001, −1.88172479868451566796040712222, 0, 1.88172479868451566796040712222, 2.46577579663443202006489286001, 3.25789916019970985149241668522, 3.93248938191933883368365438910, 4.67151118083174044424440562990, 5.43566390147651387178069908543, 5.69499044664078178064863501644, 6.62869996311056989380659379008, 7.26657113470292593392223546398

Graph of the $Z$-function along the critical line