Properties

Label 8325.2.a.cf
Level $8325$
Weight $2$
Character orbit 8325.a
Self dual yes
Analytic conductor $66.475$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8325,2,Mod(1,8325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8325.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8325 = 3^{2} \cdot 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.4754596827\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.457904.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 5x^{3} + 8x^{2} + 5x - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1665)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} + \beta_1) q^{4} + ( - \beta_{4} + \beta_{2}) q^{7} + (\beta_{3} + 2 \beta_{2} + \beta_1) q^{8} + ( - \beta_{4} + \beta_{3} - 2) q^{11} + (\beta_{4} + \beta_{3} - \beta_{2} + \cdots + 1) q^{13}+ \cdots + (2 \beta_{4} - 4 \beta_{2} - 6 \beta_1 + 2) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 2 q^{2} + 4 q^{4} + 6 q^{8} - 12 q^{11} + 3 q^{13} - 10 q^{14} - 2 q^{16} + 4 q^{17} - 8 q^{19} - 10 q^{22} + 18 q^{23} - 2 q^{26} + 4 q^{28} - 13 q^{29} - 16 q^{31} + 14 q^{32} - 2 q^{34} - 5 q^{37}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 2x^{4} - 5x^{3} + 8x^{2} + 5x - 6 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 2\nu^{2} - 3\nu + 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - \nu^{3} - 5\nu^{2} + 2\nu + 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 2\beta_{2} + 5\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + \beta_{3} + 7\beta_{2} + 8\beta _1 + 6 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.80696
−1.07694
0.788997
1.51432
2.58059
−1.80696 0 1.26510 0 0 2.45070 1.32794 0 0
1.2 −1.07694 0 −0.840195 0 0 1.59547 3.05873 0 0
1.3 0.788997 0 −1.37748 0 0 −4.52826 −2.66482 0 0
1.4 1.51432 0 0.293161 0 0 1.43000 −2.58470 0 0
1.5 2.58059 0 4.65942 0 0 −0.947908 6.86286 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)
\(37\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8325.2.a.cf 5
3.b odd 2 1 8325.2.a.by 5
5.b even 2 1 1665.2.a.o 5
15.d odd 2 1 1665.2.a.r yes 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1665.2.a.o 5 5.b even 2 1
1665.2.a.r yes 5 15.d odd 2 1
8325.2.a.by 5 3.b odd 2 1
8325.2.a.cf 5 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8325))\):

\( T_{2}^{5} - 2T_{2}^{4} - 5T_{2}^{3} + 8T_{2}^{2} + 5T_{2} - 6 \) Copy content Toggle raw display
\( T_{7}^{5} - 16T_{7}^{3} + 24T_{7}^{2} + 11T_{7} - 24 \) Copy content Toggle raw display
\( T_{11}^{5} + 12T_{11}^{4} + 33T_{11}^{3} - 76T_{11}^{2} - 389T_{11} - 292 \) Copy content Toggle raw display
\( T_{13}^{5} - 3T_{13}^{4} - 30T_{13}^{3} + 38T_{13}^{2} + 249T_{13} + 113 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} - 2 T^{4} + \cdots - 6 \) Copy content Toggle raw display
$3$ \( T^{5} \) Copy content Toggle raw display
$5$ \( T^{5} \) Copy content Toggle raw display
$7$ \( T^{5} - 16 T^{3} + \cdots - 24 \) Copy content Toggle raw display
$11$ \( T^{5} + 12 T^{4} + \cdots - 292 \) Copy content Toggle raw display
$13$ \( T^{5} - 3 T^{4} + \cdots + 113 \) Copy content Toggle raw display
$17$ \( T^{5} - 4 T^{4} + \cdots - 2048 \) Copy content Toggle raw display
$19$ \( T^{5} + 8 T^{4} + \cdots - 4 \) Copy content Toggle raw display
$23$ \( T^{5} - 18 T^{4} + \cdots - 128 \) Copy content Toggle raw display
$29$ \( T^{5} + 13 T^{4} + \cdots + 4877 \) Copy content Toggle raw display
$31$ \( T^{5} + 16 T^{4} + \cdots - 7938 \) Copy content Toggle raw display
$37$ \( (T + 1)^{5} \) Copy content Toggle raw display
$41$ \( T^{5} + 6 T^{4} + \cdots - 334 \) Copy content Toggle raw display
$43$ \( T^{5} + 5 T^{4} + \cdots - 3 \) Copy content Toggle raw display
$47$ \( T^{5} - 19 T^{4} + \cdots + 117 \) Copy content Toggle raw display
$53$ \( T^{5} - 5 T^{4} + \cdots - 4176 \) Copy content Toggle raw display
$59$ \( T^{5} - T^{4} + \cdots + 13 \) Copy content Toggle raw display
$61$ \( T^{5} + 2 T^{4} + \cdots + 1664 \) Copy content Toggle raw display
$67$ \( T^{5} + 12 T^{4} + \cdots + 292 \) Copy content Toggle raw display
$71$ \( T^{5} + 30 T^{4} + \cdots - 19678 \) Copy content Toggle raw display
$73$ \( T^{5} + 12 T^{4} + \cdots - 444 \) Copy content Toggle raw display
$79$ \( T^{5} + 12 T^{4} + \cdots + 2126 \) Copy content Toggle raw display
$83$ \( T^{5} - 19 T^{4} + \cdots + 3071 \) Copy content Toggle raw display
$89$ \( T^{5} + 11 T^{4} + \cdots + 6019 \) Copy content Toggle raw display
$97$ \( T^{5} - 456 T^{3} + \cdots + 245914 \) Copy content Toggle raw display
show more
show less