Properties

Label 8325.2.a.cf
Level 83258325
Weight 22
Character orbit 8325.a
Self dual yes
Analytic conductor 66.47566.475
Analytic rank 11
Dimension 55
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8325,2,Mod(1,8325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8325.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 8325=325237 8325 = 3^{2} \cdot 5^{2} \cdot 37
Weight: k k == 2 2
Character orbit: [χ][\chi] == 8325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 66.475459682766.4754596827
Analytic rank: 11
Dimension: 55
Coefficient field: 5.5.457904.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x52x45x3+8x2+5x6 x^{5} - 2x^{4} - 5x^{3} + 8x^{2} + 5x - 6 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 1665)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β3,β41,\beta_1,\beta_2,\beta_3,\beta_4 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+(β2+β1)q4+(β4+β2)q7+(β3+2β2+β1)q8+(β4+β32)q11+(β4+β3β2++1)q13++(2β44β26β1+2)q98+O(q100) q + \beta_1 q^{2} + (\beta_{2} + \beta_1) q^{4} + ( - \beta_{4} + \beta_{2}) q^{7} + (\beta_{3} + 2 \beta_{2} + \beta_1) q^{8} + ( - \beta_{4} + \beta_{3} - 2) q^{11} + (\beta_{4} + \beta_{3} - \beta_{2} + \cdots + 1) q^{13}+ \cdots + (2 \beta_{4} - 4 \beta_{2} - 6 \beta_1 + 2) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 5q+2q2+4q4+6q812q11+3q1310q142q16+4q178q1910q22+18q232q26+4q2813q2916q31+14q322q345q37+6q98+O(q100) 5 q + 2 q^{2} + 4 q^{4} + 6 q^{8} - 12 q^{11} + 3 q^{13} - 10 q^{14} - 2 q^{16} + 4 q^{17} - 8 q^{19} - 10 q^{22} + 18 q^{23} - 2 q^{26} + 4 q^{28} - 13 q^{29} - 16 q^{31} + 14 q^{32} - 2 q^{34} - 5 q^{37}+ \cdots - 6 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x52x45x3+8x2+5x6 x^{5} - 2x^{4} - 5x^{3} + 8x^{2} + 5x - 6 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν2ν2 \nu^{2} - \nu - 2 Copy content Toggle raw display
β3\beta_{3}== ν32ν23ν+4 \nu^{3} - 2\nu^{2} - 3\nu + 4 Copy content Toggle raw display
β4\beta_{4}== ν4ν35ν2+2ν+4 \nu^{4} - \nu^{3} - 5\nu^{2} + 2\nu + 4 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+β1+2 \beta_{2} + \beta _1 + 2 Copy content Toggle raw display
ν3\nu^{3}== β3+2β2+5β1 \beta_{3} + 2\beta_{2} + 5\beta_1 Copy content Toggle raw display
ν4\nu^{4}== β4+β3+7β2+8β1+6 \beta_{4} + \beta_{3} + 7\beta_{2} + 8\beta _1 + 6 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−1.80696
−1.07694
0.788997
1.51432
2.58059
−1.80696 0 1.26510 0 0 2.45070 1.32794 0 0
1.2 −1.07694 0 −0.840195 0 0 1.59547 3.05873 0 0
1.3 0.788997 0 −1.37748 0 0 −4.52826 −2.66482 0 0
1.4 1.51432 0 0.293161 0 0 1.43000 −2.58470 0 0
1.5 2.58059 0 4.65942 0 0 −0.947908 6.86286 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 +1 +1
55 +1 +1
3737 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8325.2.a.cf 5
3.b odd 2 1 8325.2.a.by 5
5.b even 2 1 1665.2.a.o 5
15.d odd 2 1 1665.2.a.r yes 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1665.2.a.o 5 5.b even 2 1
1665.2.a.r yes 5 15.d odd 2 1
8325.2.a.by 5 3.b odd 2 1
8325.2.a.cf 5 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(8325))S_{2}^{\mathrm{new}}(\Gamma_0(8325)):

T252T245T23+8T22+5T26 T_{2}^{5} - 2T_{2}^{4} - 5T_{2}^{3} + 8T_{2}^{2} + 5T_{2} - 6 Copy content Toggle raw display
T7516T73+24T72+11T724 T_{7}^{5} - 16T_{7}^{3} + 24T_{7}^{2} + 11T_{7} - 24 Copy content Toggle raw display
T115+12T114+33T11376T112389T11292 T_{11}^{5} + 12T_{11}^{4} + 33T_{11}^{3} - 76T_{11}^{2} - 389T_{11} - 292 Copy content Toggle raw display
T1353T13430T133+38T132+249T13+113 T_{13}^{5} - 3T_{13}^{4} - 30T_{13}^{3} + 38T_{13}^{2} + 249T_{13} + 113 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T52T4+6 T^{5} - 2 T^{4} + \cdots - 6 Copy content Toggle raw display
33 T5 T^{5} Copy content Toggle raw display
55 T5 T^{5} Copy content Toggle raw display
77 T516T3+24 T^{5} - 16 T^{3} + \cdots - 24 Copy content Toggle raw display
1111 T5+12T4+292 T^{5} + 12 T^{4} + \cdots - 292 Copy content Toggle raw display
1313 T53T4++113 T^{5} - 3 T^{4} + \cdots + 113 Copy content Toggle raw display
1717 T54T4+2048 T^{5} - 4 T^{4} + \cdots - 2048 Copy content Toggle raw display
1919 T5+8T4+4 T^{5} + 8 T^{4} + \cdots - 4 Copy content Toggle raw display
2323 T518T4+128 T^{5} - 18 T^{4} + \cdots - 128 Copy content Toggle raw display
2929 T5+13T4++4877 T^{5} + 13 T^{4} + \cdots + 4877 Copy content Toggle raw display
3131 T5+16T4+7938 T^{5} + 16 T^{4} + \cdots - 7938 Copy content Toggle raw display
3737 (T+1)5 (T + 1)^{5} Copy content Toggle raw display
4141 T5+6T4+334 T^{5} + 6 T^{4} + \cdots - 334 Copy content Toggle raw display
4343 T5+5T4+3 T^{5} + 5 T^{4} + \cdots - 3 Copy content Toggle raw display
4747 T519T4++117 T^{5} - 19 T^{4} + \cdots + 117 Copy content Toggle raw display
5353 T55T4+4176 T^{5} - 5 T^{4} + \cdots - 4176 Copy content Toggle raw display
5959 T5T4++13 T^{5} - T^{4} + \cdots + 13 Copy content Toggle raw display
6161 T5+2T4++1664 T^{5} + 2 T^{4} + \cdots + 1664 Copy content Toggle raw display
6767 T5+12T4++292 T^{5} + 12 T^{4} + \cdots + 292 Copy content Toggle raw display
7171 T5+30T4+19678 T^{5} + 30 T^{4} + \cdots - 19678 Copy content Toggle raw display
7373 T5+12T4+444 T^{5} + 12 T^{4} + \cdots - 444 Copy content Toggle raw display
7979 T5+12T4++2126 T^{5} + 12 T^{4} + \cdots + 2126 Copy content Toggle raw display
8383 T519T4++3071 T^{5} - 19 T^{4} + \cdots + 3071 Copy content Toggle raw display
8989 T5+11T4++6019 T^{5} + 11 T^{4} + \cdots + 6019 Copy content Toggle raw display
9797 T5456T3++245914 T^{5} - 456 T^{3} + \cdots + 245914 Copy content Toggle raw display
show more
show less