L(s) = 1 | + (−1.22 + 2.12i)2-s + (1.01 − 0.583i)3-s + (−2.00 − 3.47i)4-s + (2.29 + 1.32i)5-s + 2.86i·6-s + 4.94·8-s + (−0.819 + 1.41i)9-s + (−5.62 + 3.24i)10-s + (−3.03 + 1.75i)11-s + (−4.05 − 2.34i)12-s + 1.85·13-s + 3.09·15-s + (−2.04 + 3.54i)16-s + (1.59 + 3.80i)17-s + (−2.00 − 3.47i)18-s + (0.224 − 0.389i)19-s + ⋯ |
L(s) = 1 | + (−0.867 + 1.50i)2-s + (0.583 − 0.336i)3-s + (−1.00 − 1.73i)4-s + (1.02 + 0.592i)5-s + 1.16i·6-s + 1.74·8-s + (−0.273 + 0.472i)9-s + (−1.77 + 1.02i)10-s + (−0.915 + 0.528i)11-s + (−1.17 − 0.676i)12-s + 0.513·13-s + 0.798·15-s + (−0.511 + 0.885i)16-s + (0.387 + 0.921i)17-s + (−0.473 − 0.820i)18-s + (0.0515 − 0.0893i)19-s + ⋯ |
Λ(s)=(=(833s/2ΓC(s)L(s)(−0.968−0.249i)Λ(2−s)
Λ(s)=(=(833s/2ΓC(s+1/2)L(s)(−0.968−0.249i)Λ(1−s)
Degree: |
2 |
Conductor: |
833
= 72⋅17
|
Sign: |
−0.968−0.249i
|
Analytic conductor: |
6.65153 |
Root analytic conductor: |
2.57905 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ833(373,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 833, ( :1/2), −0.968−0.249i)
|
Particular Values
L(1) |
≈ |
0.140806+1.11145i |
L(21) |
≈ |
0.140806+1.11145i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 17 | 1+(−1.59−3.80i)T |
good | 2 | 1+(1.22−2.12i)T+(−1−1.73i)T2 |
| 3 | 1+(−1.01+0.583i)T+(1.5−2.59i)T2 |
| 5 | 1+(−2.29−1.32i)T+(2.5+4.33i)T2 |
| 11 | 1+(3.03−1.75i)T+(5.5−9.52i)T2 |
| 13 | 1−1.85T+13T2 |
| 19 | 1+(−0.224+0.389i)T+(−9.5−16.4i)T2 |
| 23 | 1+(4.18+2.41i)T+(11.5+19.9i)T2 |
| 29 | 1−8.72iT−29T2 |
| 31 | 1+(−5.78+3.33i)T+(15.5−26.8i)T2 |
| 37 | 1+(−4.47−2.58i)T+(18.5+32.0i)T2 |
| 41 | 1+3.10iT−41T2 |
| 43 | 1+7.42T+43T2 |
| 47 | 1+(6.16−10.6i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−5.15−8.93i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−1.29−2.25i)T+(−29.5+51.0i)T2 |
| 61 | 1+(3.27+1.89i)T+(30.5+52.8i)T2 |
| 67 | 1+(−1.03−1.79i)T+(−33.5+58.0i)T2 |
| 71 | 1+12.3iT−71T2 |
| 73 | 1+(1.95−1.13i)T+(36.5−63.2i)T2 |
| 79 | 1+(−0.384−0.222i)T+(39.5+68.4i)T2 |
| 83 | 1−8.97T+83T2 |
| 89 | 1+(0.598−1.03i)T+(−44.5−77.0i)T2 |
| 97 | 1+2.92iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.25976411099804227123966889105, −9.593851314693043445639324072416, −8.581418842769608506942228582413, −8.049750464979920104516144606584, −7.32324747378835406357169614396, −6.35212969998112927627036482801, −5.81203514352400168965344519685, −4.79821869181507408143423135345, −2.89028238720390634914543786873, −1.69425543117795749690652771006,
0.68429425803735148937868929958, 2.06185455331027516449550971897, 2.94366999547392587569030739118, 3.84896386343126094848873796920, 5.19710156390600463037232169639, 6.22347900447406404253488826295, 7.962894388375689185403270616931, 8.453866928849739138619978395233, 9.273544525024706444598845558749, 9.906051542980499876319182456818