Properties

Label 833.2.j.a
Level $833$
Weight $2$
Character orbit 833.j
Analytic conductor $6.652$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [833,2,Mod(67,833)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(833, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("833.67");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 833 = 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 833.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.65153848837\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 15 x^{18} + 158 x^{16} - 789 x^{14} + 2811 x^{12} - 5497 x^{10} + 7763 x^{8} - 6130 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 119)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{19}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{15} q^{2} - \beta_1 q^{3} + (\beta_{14} + \beta_{11} - 1) q^{4} + ( - \beta_{18} + \beta_{5}) q^{5} + ( - \beta_{16} - \beta_{12} + \beta_{3}) q^{6} + ( - \beta_{7} - \beta_{2}) q^{8} + ( - \beta_{15} - \beta_{14} + \cdots - \beta_{8}) q^{9}+ \cdots + (2 \beta_{19} - 2 \beta_{18} + \cdots - 3 \beta_{3}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 2 q^{2} - 10 q^{4} + 16 q^{13} - 16 q^{15} - 2 q^{16} + 2 q^{17} + 18 q^{18} + 10 q^{19} - 10 q^{25} - 12 q^{26} - 10 q^{30} - 12 q^{32} - 2 q^{33} - 24 q^{34} + 56 q^{36} + 2 q^{38} - 52 q^{43}+ \cdots - 50 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{20} - 15 x^{18} + 158 x^{16} - 789 x^{14} + 2811 x^{12} - 5497 x^{10} + 7763 x^{8} - 6130 x^{6} + \cdots + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 105167985248 \nu^{18} + 1578475893214 \nu^{16} - 16365824001665 \nu^{14} + \cdots + 78380272675006 ) / 33764073776255 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 105167985248 \nu^{19} - 1578475893214 \nu^{17} + 16365824001665 \nu^{15} + \cdots - 112144346451261 \nu ) / 33764073776255 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 236129147271 \nu^{19} - 3281139197798 \nu^{17} + 34019237713405 \nu^{15} + \cdots + 11\!\cdots\!48 \nu ) / 33764073776255 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 303278752213 \nu^{19} - 4348221369074 \nu^{17} + 45082871365015 \nu^{15} + \cdots + 638549285555839 \nu ) / 33764073776255 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 460801810894 \nu^{18} - 6375056707571 \nu^{16} + 65591526282169 \nu^{14} + \cdots - 644575884732 ) / 33764073776255 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 472619581157 \nu^{18} + 6984961679586 \nu^{16} - 72420905506335 \nu^{14} + \cdots + 30029587318919 ) / 33764073776255 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 475596342403 \nu^{18} + 6993779433564 \nu^{16} - 72512329018290 \nu^{14} + \cdots - 57671699234524 ) / 33764073776255 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 493117151933 \nu^{19} - 7245067417544 \nu^{17} + 75117712437340 \nu^{15} + \cdots + 225879576443454 \nu ) / 33764073776255 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 598285137181 \nu^{18} - 8823543310758 \nu^{16} + 91483536439005 \nu^{14} + \cdots + 79971156215938 ) / 33764073776255 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 122498334469 \nu^{18} - 1833970855129 \nu^{16} + 19304479249306 \nu^{14} + \cdots - 227538607333 ) / 6752814755251 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 122498334469 \nu^{19} + 1833970855129 \nu^{17} - 19304479249306 \nu^{15} + \cdots + 227538607333 \nu ) / 6752814755251 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 689548905141 \nu^{18} + 10891933046952 \nu^{16} - 117027224125074 \nu^{14} + \cdots + 60014234912796 ) / 33764073776255 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 978391868587 \nu^{18} - 15396851960764 \nu^{16} + 165239222424698 \nu^{14} + \cdots - 83148106178662 ) / 33764073776255 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 1425943258811 \nu^{18} - 21174880035929 \nu^{16} + 222383983019251 \nu^{14} + \cdots - 2578664825543 ) / 33764073776255 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( 2143602916404 \nu^{19} - 31923210204788 \nu^{17} + 335272203267446 \nu^{15} + \cdots - 115860704313469 \nu ) / 33764073776255 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( 3734486457336 \nu^{19} - 56489916441197 \nu^{17} + 597033821938674 \nu^{15} + \cdots - 233910577305051 \nu ) / 33764073776255 \) Copy content Toggle raw display
\(\beta_{18}\)\(=\) \( ( 11767895547054 \nu^{19} - 176194784496911 \nu^{17} + \cdots - 21863907259012 \nu ) / 33764073776255 \) Copy content Toggle raw display
\(\beta_{19}\)\(=\) \( ( - 20944702587753 \nu^{19} + 313328976477377 \nu^{17} + \cdots + 38806614014209 \nu ) / 33764073776255 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{15} - \beta_{14} - \beta_{13} + 3\beta_{11} - \beta_{10} - \beta_{8} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{19} + 2\beta_{18} - \beta_{17} - \beta_{16} - 6\beta_{12} - \beta_{9} + \beta_{3} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -8\beta_{15} - 7\beta_{14} - 9\beta_{13} + 18\beta_{11} - 2\beta_{7} + 2\beta_{6} + 8\beta_{2} - 18 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 9\beta_{19} + 20\beta_{18} - 11\beta_{17} - 14\beta_{16} - 46\beta_{12} - 20\beta_{5} + 9\beta_{4} - 46\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 52\beta_{10} + 75\beta_{8} - 25\beta_{7} + 69\beta_{2} - 133 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 102\beta_{9} - 175\beta_{5} + 75\beta_{4} - 142\beta_{3} - 379\beta_1 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 596\beta_{15} + 412\beta_{14} + 629\beta_{13} - 1068\beta_{11} + 412\beta_{10} + 629\beta_{8} - 244\beta_{6} \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( -629\beta_{19} - 1502\beta_{18} + 900\beta_{17} + 1301\beta_{16} + 3193\beta_{12} + 900\beta_{9} - 1301\beta_{3} \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 5123 \beta_{15} + 3394 \beta_{14} + 5324 \beta_{13} - 8880 \beta_{11} + 2201 \beta_{7} - 2201 \beta_{6} + \cdots + 8880 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( - 5324 \beta_{19} - 12849 \beta_{18} + 7796 \beta_{17} + 11455 \beta_{16} + 27123 \beta_{12} + \cdots + 27123 \beta_1 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( -28517\beta_{10} - 45296\beta_{8} + 19251\beta_{7} - 43902\beta_{2} + 74967 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( -67019\beta_{9} + 109843\beta_{5} - 45296\beta_{4} + 99183\beta_{3} + 231184\beta_1 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( - 375663 \beta_{15} - 241844 \beta_{14} - 386323 \beta_{13} + 637193 \beta_{11} + \cdots + 166202 \beta_{6} \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( 386323 \beta_{19} + 938848 \beta_{18} - 574248 \beta_{17} - 852546 \beta_{16} - 1973427 \beta_{12} + \cdots + 852546 \beta_{3} \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( - 3212296 \beta_{15} - 2059729 \beta_{14} - 3298598 \beta_{13} + 5432335 \beta_{11} - 1426794 \beta_{7} + \cdots - 5432335 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( 3298598 \beta_{19} + 8023990 \beta_{18} - 4913317 \beta_{17} - 7304753 \beta_{16} + \cdots - 16856546 \beta_1 \) Copy content Toggle raw display
\(\nu^{18}\)\(=\) \( 17575783\beta_{10} + 28179134\beta_{8} - 12218070\beta_{7} + 27459897\beta_{2} - 46375558 \) Copy content Toggle raw display
\(\nu^{19}\)\(=\) \( 42011923\beta_{9} - 68576338\beta_{5} + 28179134\beta_{4} - 62499388\beta_{3} - 144026512\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/833\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(785\)
\(\chi(n)\) \(-\beta_{11}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
67.1
1.01061 + 0.583476i
−1.01061 0.583476i
2.53174 + 1.46170i
−2.53174 1.46170i
0.974258 + 0.562488i
−0.974258 0.562488i
1.69010 + 0.975779i
−1.69010 0.975779i
0.115629 + 0.0667582i
−0.115629 0.0667582i
1.01061 0.583476i
−1.01061 + 0.583476i
2.53174 1.46170i
−2.53174 + 1.46170i
0.974258 0.562488i
−0.974258 + 0.562488i
1.69010 0.975779i
−1.69010 + 0.975779i
0.115629 0.0667582i
−0.115629 + 0.0667582i
−1.22628 2.12399i −1.01061 0.583476i −2.00755 + 3.47717i −2.29376 + 1.32430i 2.86203i 0 4.94216 −0.819111 1.41874i 5.62560 + 3.24794i
67.2 −1.22628 2.12399i 1.01061 + 0.583476i −2.00755 + 3.47717i 2.29376 1.32430i 2.86203i 0 4.94216 −0.819111 1.41874i −5.62560 3.24794i
67.3 −0.717211 1.24225i −2.53174 1.46170i −0.0287840 + 0.0498554i 1.51432 0.874295i 4.19339i 0 −2.78627 2.77312 + 4.80319i −2.17218 1.25411i
67.4 −0.717211 1.24225i 2.53174 + 1.46170i −0.0287840 + 0.0498554i −1.51432 + 0.874295i 4.19339i 0 −2.78627 2.77312 + 4.80319i 2.17218 + 1.25411i
67.5 −0.274428 0.475324i −0.974258 0.562488i 0.849378 1.47117i −0.987893 + 0.570360i 0.617451i 0 −2.03009 −0.867214 1.50206i 0.542212 + 0.313046i
67.6 −0.274428 0.475324i 0.974258 + 0.562488i 0.849378 1.47117i 0.987893 0.570360i 0.617451i 0 −2.03009 −0.867214 1.50206i −0.542212 0.313046i
67.7 0.558220 + 0.966865i −1.69010 0.975779i 0.376781 0.652604i 1.29801 0.749406i 2.17880i 0 3.07419 0.404290 + 0.700250i 1.44915 + 0.836667i
67.8 0.558220 + 0.966865i 1.69010 + 0.975779i 0.376781 0.652604i −1.29801 + 0.749406i 2.17880i 0 3.07419 0.404290 + 0.700250i −1.44915 0.836667i
67.9 1.15970 + 2.00867i −0.115629 0.0667582i −1.68983 + 2.92687i 2.18741 1.26290i 0.309679i 0 −3.19999 −1.49109 2.58264i 5.07349 + 2.92918i
67.10 1.15970 + 2.00867i 0.115629 + 0.0667582i −1.68983 + 2.92687i −2.18741 + 1.26290i 0.309679i 0 −3.19999 −1.49109 2.58264i −5.07349 2.92918i
373.1 −1.22628 + 2.12399i −1.01061 + 0.583476i −2.00755 3.47717i −2.29376 1.32430i 2.86203i 0 4.94216 −0.819111 + 1.41874i 5.62560 3.24794i
373.2 −1.22628 + 2.12399i 1.01061 0.583476i −2.00755 3.47717i 2.29376 + 1.32430i 2.86203i 0 4.94216 −0.819111 + 1.41874i −5.62560 + 3.24794i
373.3 −0.717211 + 1.24225i −2.53174 + 1.46170i −0.0287840 0.0498554i 1.51432 + 0.874295i 4.19339i 0 −2.78627 2.77312 4.80319i −2.17218 + 1.25411i
373.4 −0.717211 + 1.24225i 2.53174 1.46170i −0.0287840 0.0498554i −1.51432 0.874295i 4.19339i 0 −2.78627 2.77312 4.80319i 2.17218 1.25411i
373.5 −0.274428 + 0.475324i −0.974258 + 0.562488i 0.849378 + 1.47117i −0.987893 0.570360i 0.617451i 0 −2.03009 −0.867214 + 1.50206i 0.542212 0.313046i
373.6 −0.274428 + 0.475324i 0.974258 0.562488i 0.849378 + 1.47117i 0.987893 + 0.570360i 0.617451i 0 −2.03009 −0.867214 + 1.50206i −0.542212 + 0.313046i
373.7 0.558220 0.966865i −1.69010 + 0.975779i 0.376781 + 0.652604i 1.29801 + 0.749406i 2.17880i 0 3.07419 0.404290 0.700250i 1.44915 0.836667i
373.8 0.558220 0.966865i 1.69010 0.975779i 0.376781 + 0.652604i −1.29801 0.749406i 2.17880i 0 3.07419 0.404290 0.700250i −1.44915 + 0.836667i
373.9 1.15970 2.00867i −0.115629 + 0.0667582i −1.68983 2.92687i 2.18741 + 1.26290i 0.309679i 0 −3.19999 −1.49109 + 2.58264i 5.07349 2.92918i
373.10 1.15970 2.00867i 0.115629 0.0667582i −1.68983 2.92687i −2.18741 1.26290i 0.309679i 0 −3.19999 −1.49109 + 2.58264i −5.07349 + 2.92918i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 67.10
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner
17.b even 2 1 inner
119.j even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 833.2.j.a 20
7.b odd 2 1 119.2.j.a 20
7.c even 3 1 833.2.b.d 10
7.c even 3 1 inner 833.2.j.a 20
7.d odd 6 1 119.2.j.a 20
7.d odd 6 1 833.2.b.c 10
17.b even 2 1 inner 833.2.j.a 20
119.d odd 2 1 119.2.j.a 20
119.h odd 6 1 119.2.j.a 20
119.h odd 6 1 833.2.b.c 10
119.j even 6 1 833.2.b.d 10
119.j even 6 1 inner 833.2.j.a 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
119.2.j.a 20 7.b odd 2 1
119.2.j.a 20 7.d odd 6 1
119.2.j.a 20 119.d odd 2 1
119.2.j.a 20 119.h odd 6 1
833.2.b.c 10 7.d odd 6 1
833.2.b.c 10 119.h odd 6 1
833.2.b.d 10 7.c even 3 1
833.2.b.d 10 119.j even 6 1
833.2.j.a 20 1.a even 1 1 trivial
833.2.j.a 20 7.c even 3 1 inner
833.2.j.a 20 17.b even 2 1 inner
833.2.j.a 20 119.j even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(833, [\chi])\):

\( T_{2}^{10} + T_{2}^{9} + 8T_{2}^{8} + 5T_{2}^{7} + 47T_{2}^{6} + 31T_{2}^{5} + 87T_{2}^{4} + 22T_{2}^{3} + 94T_{2}^{2} + 40T_{2} + 25 \) Copy content Toggle raw display
\( T_{13}^{5} - 4T_{13}^{4} - 24T_{13}^{3} + 59T_{13}^{2} + 119T_{13} - 245 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{10} + T^{9} + 8 T^{8} + \cdots + 25)^{2} \) Copy content Toggle raw display
$3$ \( T^{20} - 15 T^{18} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{20} - 20 T^{18} + \cdots + 160000 \) Copy content Toggle raw display
$7$ \( T^{20} \) Copy content Toggle raw display
$11$ \( T^{20} - 44 T^{18} + \cdots + 5764801 \) Copy content Toggle raw display
$13$ \( (T^{5} - 4 T^{4} + \cdots - 245)^{4} \) Copy content Toggle raw display
$17$ \( T^{20} + \cdots + 2015993900449 \) Copy content Toggle raw display
$19$ \( (T^{10} - 5 T^{9} + \cdots + 153664)^{2} \) Copy content Toggle raw display
$23$ \( T^{20} + \cdots + 377801998336 \) Copy content Toggle raw display
$29$ \( (T^{10} + 175 T^{8} + \cdots + 24010000)^{2} \) Copy content Toggle raw display
$31$ \( T^{20} + \cdots + 53974440976 \) Copy content Toggle raw display
$37$ \( T^{20} + \cdots + 14757890560000 \) Copy content Toggle raw display
$41$ \( (T^{10} + 182 T^{8} + \cdots + 2972176)^{2} \) Copy content Toggle raw display
$43$ \( (T^{5} + 13 T^{4} + \cdots - 1892)^{4} \) Copy content Toggle raw display
$47$ \( (T^{10} + 15 T^{9} + \cdots + 2458624)^{2} \) Copy content Toggle raw display
$53$ \( (T^{10} - 20 T^{9} + \cdots + 32041)^{2} \) Copy content Toggle raw display
$59$ \( (T^{10} - 7 T^{9} + \cdots + 13868176)^{2} \) Copy content Toggle raw display
$61$ \( T^{20} + \cdots + 655360000 \) Copy content Toggle raw display
$67$ \( (T^{10} - 6 T^{9} + \cdots + 256)^{2} \) Copy content Toggle raw display
$71$ \( (T^{10} + 547 T^{8} + \cdots + 782824441)^{2} \) Copy content Toggle raw display
$73$ \( T^{20} + \cdots + 37583962091776 \) Copy content Toggle raw display
$79$ \( T^{20} + \cdots + 751274631121 \) Copy content Toggle raw display
$83$ \( (T^{5} + 24 T^{4} + \cdots - 7448)^{4} \) Copy content Toggle raw display
$89$ \( (T^{10} + 8 T^{9} + \cdots + 153664)^{2} \) Copy content Toggle raw display
$97$ \( (T^{10} + 465 T^{8} + \cdots + 736579600)^{2} \) Copy content Toggle raw display
show more
show less