L(s) = 1 | + (−0.717 + 1.24i)2-s + (2.53 − 1.46i)3-s + (−0.0287 − 0.0498i)4-s + (−1.51 − 0.874i)5-s + 4.19i·6-s − 2.78·8-s + (2.77 − 4.80i)9-s + (2.17 − 1.25i)10-s + (1.21 − 0.703i)11-s + (−0.145 − 0.0841i)12-s + 2.32·13-s − 5.11·15-s + (2.05 − 3.56i)16-s + (−1.79 − 3.71i)17-s + (3.97 + 6.88i)18-s + (3.72 − 6.44i)19-s + ⋯ |
L(s) = 1 | + (−0.507 + 0.878i)2-s + (1.46 − 0.843i)3-s + (−0.0143 − 0.0249i)4-s + (−0.677 − 0.390i)5-s + 1.71i·6-s − 0.985·8-s + (0.924 − 1.60i)9-s + (0.686 − 0.396i)10-s + (0.367 − 0.212i)11-s + (−0.0420 − 0.0242i)12-s + 0.644·13-s − 1.31·15-s + (0.513 − 0.890i)16-s + (−0.434 − 0.900i)17-s + (0.937 + 1.62i)18-s + (0.854 − 1.47i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 833 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.979 + 0.199i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 833 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.979 + 0.199i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.80638 - 0.181926i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.80638 - 0.181926i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 17 | \( 1 + (1.79 + 3.71i)T \) |
good | 2 | \( 1 + (0.717 - 1.24i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-2.53 + 1.46i)T + (1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (1.51 + 0.874i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.21 + 0.703i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 2.32T + 13T^{2} \) |
| 19 | \( 1 + (-3.72 + 6.44i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-5.60 - 3.23i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 5.93iT - 29T^{2} \) |
| 31 | \( 1 + (-4.64 + 2.68i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-1.55 - 0.898i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 5.04iT - 41T^{2} \) |
| 43 | \( 1 + 1.00T + 43T^{2} \) |
| 47 | \( 1 + (1.93 - 3.35i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.90 - 5.03i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (3.01 + 5.22i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (7.56 + 4.36i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.08 + 1.87i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 6.93iT - 71T^{2} \) |
| 73 | \( 1 + (-5.83 + 3.36i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (1.68 + 0.975i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 14.6T + 83T^{2} \) |
| 89 | \( 1 + (-0.454 + 0.787i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 10.6iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.366277280544673219857822070771, −9.117217545892846025773861295735, −8.361663615282329495422781281749, −7.67881525990916777916855555247, −7.09153065322700764795741752039, −6.37832729406321951349165498166, −4.82278384181601666145994024896, −3.40048011317819535981198899124, −2.76158226046952567326762668711, −0.983815129628827058408747480407,
1.57768871543713154015546427363, 2.78237008639651634668772840053, 3.56343209112499152950720987383, 4.23516673185865862494689569494, 5.82329855502769872589080210276, 7.07773078780570192505063290300, 8.223916526053328311075913224945, 8.626114488503608089041832617060, 9.552102812031906049777469609185, 10.13868849254843216529836170853