Properties

Label 2-29e2-1.1-c1-0-10
Degree $2$
Conductor $841$
Sign $1$
Analytic cond. $6.71541$
Root an. cond. $2.59141$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.61·2-s − 1.61·3-s + 0.618·4-s − 2.85·5-s − 2.61·6-s + 2.23·7-s − 2.23·8-s − 0.381·9-s − 4.61·10-s + 3.61·11-s − 1.00·12-s + 4.23·13-s + 3.61·14-s + 4.61·15-s − 4.85·16-s + 6.61·17-s − 0.618·18-s − 1.85·19-s − 1.76·20-s − 3.61·21-s + 5.85·22-s + 3.23·23-s + 3.61·24-s + 3.14·25-s + 6.85·26-s + 5.47·27-s + 1.38·28-s + ⋯
L(s)  = 1  + 1.14·2-s − 0.934·3-s + 0.309·4-s − 1.27·5-s − 1.06·6-s + 0.845·7-s − 0.790·8-s − 0.127·9-s − 1.46·10-s + 1.09·11-s − 0.288·12-s + 1.17·13-s + 0.966·14-s + 1.19·15-s − 1.21·16-s + 1.60·17-s − 0.145·18-s − 0.425·19-s − 0.394·20-s − 0.789·21-s + 1.24·22-s + 0.674·23-s + 0.738·24-s + 0.629·25-s + 1.34·26-s + 1.05·27-s + 0.261·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(841\)    =    \(29^{2}\)
Sign: $1$
Analytic conductor: \(6.71541\)
Root analytic conductor: \(2.59141\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 841,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.664686632\)
\(L(\frac12)\) \(\approx\) \(1.664686632\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad29 \( 1 \)
good2 \( 1 - 1.61T + 2T^{2} \)
3 \( 1 + 1.61T + 3T^{2} \)
5 \( 1 + 2.85T + 5T^{2} \)
7 \( 1 - 2.23T + 7T^{2} \)
11 \( 1 - 3.61T + 11T^{2} \)
13 \( 1 - 4.23T + 13T^{2} \)
17 \( 1 - 6.61T + 17T^{2} \)
19 \( 1 + 1.85T + 19T^{2} \)
23 \( 1 - 3.23T + 23T^{2} \)
31 \( 1 + 1.09T + 31T^{2} \)
37 \( 1 - 8.70T + 37T^{2} \)
41 \( 1 - 2.85T + 41T^{2} \)
43 \( 1 - 2.76T + 43T^{2} \)
47 \( 1 - 7T + 47T^{2} \)
53 \( 1 + 2T + 53T^{2} \)
59 \( 1 + 5.09T + 59T^{2} \)
61 \( 1 + 1.61T + 61T^{2} \)
67 \( 1 + 10.4T + 67T^{2} \)
71 \( 1 - 1.52T + 71T^{2} \)
73 \( 1 - 0.291T + 73T^{2} \)
79 \( 1 + 5.09T + 79T^{2} \)
83 \( 1 - 7.94T + 83T^{2} \)
89 \( 1 - 8.70T + 89T^{2} \)
97 \( 1 - 16.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.78977792006605257639889524606, −9.236513758723421639959699559730, −8.400171141400084472062697779541, −7.53113409041226249517258001987, −6.31995150566450563052947508536, −5.73295323938505671118471030771, −4.73007397926055604656404000282, −4.03329640757439290099282440047, −3.21220399004379989912457639689, −0.975820601596906827136295852782, 0.975820601596906827136295852782, 3.21220399004379989912457639689, 4.03329640757439290099282440047, 4.73007397926055604656404000282, 5.73295323938505671118471030771, 6.31995150566450563052947508536, 7.53113409041226249517258001987, 8.400171141400084472062697779541, 9.236513758723421639959699559730, 10.78977792006605257639889524606

Graph of the $Z$-function along the critical line