L(s) = 1 | + 2·2-s − 2·3-s + 3·4-s + 2·5-s − 4·6-s + 4·8-s + 5·9-s + 4·10-s − 2·11-s − 6·12-s + 2·13-s − 4·15-s + 4·16-s − 24·17-s + 10·18-s − 12·19-s + 6·20-s − 4·22-s + 4·23-s − 8·24-s + 11·25-s + 4·26-s − 6·27-s − 8·30-s − 6·31-s + 4·33-s − 48·34-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 1.15·3-s + 3/2·4-s + 0.894·5-s − 1.63·6-s + 1.41·8-s + 5/3·9-s + 1.26·10-s − 0.603·11-s − 1.73·12-s + 0.554·13-s − 1.03·15-s + 16-s − 5.82·17-s + 2.35·18-s − 2.75·19-s + 1.34·20-s − 0.852·22-s + 0.834·23-s − 1.63·24-s + 11/5·25-s + 0.784·26-s − 1.15·27-s − 1.46·30-s − 1.07·31-s + 0.696·33-s − 8.23·34-s + ⋯ |
Λ(s)=(=((2924)s/2ΓC(s)12L(s)Λ(2−s)
Λ(s)=(=((2924)s/2ΓC(s+1/2)12L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
24.00934615 |
L(21) |
≈ |
24.00934615 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 29 | 1 |
good | 2 | 1−pT+T2+T4+pT5−11T6+7pT7−7T8+p3T9−7T10−19pT11+93T12−19p2T13−7p2T14+p6T15−7p4T16+7p6T17−11p6T18+p8T19+p8T20+p10T22−p12T23+p12T24 |
| 3 | 1+2T−T2−2pT3−4T4−2T5−11T6−124T7−169T8+26p2T9+668T10+268T11+121T12+268pT13+668p2T14+26p5T15−169p4T16−124p5T17−11p6T18−2p7T19−4p8T20−2p10T21−p10T22+2p11T23+p12T24 |
| 5 | (1−T−4T2+9T3+11T4−56T5+T6−56pT7+11p2T8+9p3T9−4p4T10−p5T11+p6T12)2 |
| 7 | 1−6T2−13T4+372T6−1595T8−8658T10+130103T12−8658p2T14−1595p4T16+372p6T18−13p8T20−6p10T22+p12T24 |
| 11 | 1+2T−17T2−54T3+172T4+862T5−1019T6−9068T7+1415T8+66538T9+27164T10−214612T11+292953T12−214612pT13+27164p2T14+66538p3T15+1415p4T16−9068p5T17−1019p6T18+862p7T19+172p8T20−54p9T21−17p10T22+2p11T23+p12T24 |
| 13 | 1−2T−15T2+42T3+84T4−238T5+323T6+21140T7−56425T8−256986T9+981820T10+813484T11−4064087T12+813484pT13+981820p2T14−256986p3T15−56425p4T16+21140p5T17+323p6T18−238p7T19+84p8T20+42p9T21−15p10T22−2p11T23+p12T24 |
| 17 | (1+4T+30T2+4pT3+p2T4)6 |
| 19 | (1+6T+17T2−12T3−395T4−2142T5−5347T6−2142pT7−395p2T8−12p3T9+17p4T10+6p5T11+p6T12)2 |
| 23 | 1−4T−2T2−12T3−77T4+2824T5−7748T6+17620T7−150091T8−497876T9+7170794T10−15234016T11+57064503T12−15234016pT13+7170794p2T14−497876p3T15−150091p4T16+17620p5T17−7748p6T18+2824p7T19−77p8T20−12p9T21−2p10T22−4p11T23+p12T24 |
| 31 | 1+6T+15T2+150T3+740T4−1686T5−12171T6+121764T7−38561T8−3431970T9+14562396T10+35258196T11−695550439T12+35258196pT13+14562396p2T14−3431970p3T15−38561p4T16+121764p5T17−12171p6T18−1686p7T19+740p8T20+150p9T21+15p10T22+6p11T23+p12T24 |
| 37 | (1−4T−21T2+232T3−151T4−7980T5+37507T6−7980pT7−151p2T8+232p3T9−21p4T10−4p5T11+p6T12)2 |
| 41 | (1−8T+26T2−8pT3+p2T4)6 |
| 43 | 1+10T−9T2−750T3−4068T4+18710T5+324653T6+1377620T7−6043945T8−105594030T9−405057092T10+2313062620T11+33051670633T12+2313062620pT13−405057092p2T14−105594030p3T15−6043945p4T16+1377620p5T17+324653p6T18+18710p7T19−4068p8T20−750p9T21−9p10T22+10p11T23+p12T24 |
| 47 | 1+2T−73T2−206T3+3188T4+10958T5−81667T6−1120740T7−1965361T8+50483338T9+327352316T10−941541668T11−18002295447T12−941541668pT13+327352316p2T14+50483338p3T15−1965361p4T16−1120740p5T17−81667p6T18+10958p7T19+3188p8T20−206p9T21−73p10T22+2p11T23+p12T24 |
| 53 | 1+2T−31T2−26T3−1564T4−11122T5+116819T6−276804T7−1427929T8+50456794T9−206594692T10−1552995212T11+13484296521T12−1552995212pT13−206594692p2T14+50456794p3T15−1427929p4T16−276804p5T17+116819p6T18−11122p7T19−1564p8T20−26p9T21−31p10T22+2p11T23+p12T24 |
| 59 | (1−4T+90T2−4pT3+p2T4)6 |
| 61 | 1−4T−102T2+636T3+6747T4−62264T5−322732T6+3045052T7+15988997T8−112841172T9−977443874T10+1993080032T11+75404245135T12+1993080032pT13−977443874p2T14−112841172p3T15+15988997p4T16+3045052p5T17−322732p6T18−62264p7T19+6747p8T20+636p9T21−102p10T22−4p11T23+p12T24 |
| 67 | 1−102T2+5915T4−145452T6−11716331T8+1847999790T10−135901368721T12+1847999790p2T14−11716331p4T16−145452p6T18+5915p8T20−102p10T22+p12T24 |
| 71 | 1−12T−26T2+1500T3−8397T4−71592T5+1139660T6−3794628T7−44881003T8+573563748T9−1764997470T10−18958533216T11+265120791319T12−18958533216pT13−1764997470p2T14+573563748p3T15−44881003p4T16−3794628p5T17+1139660p6T18−71592p7T19−8397p8T20+1500p9T21−26p10T22−12p11T23+p12T24 |
| 73 | (1+4T−57T2−520T3+2081T4+46284T5+33223T6+46284pT7+2081p2T8−520p3T9−57p4T10+4p5T11+p6T12)2 |
| 79 | 1−2T−153T2+462T3+17172T4−70222T5−1673683T6+3051524T7+160589807T8−97571466T9−15054141956T10+1009253284T11+1374657086665T12+1009253284pT13−15054141956p2T14−97571466p3T15+160589807p4T16+3051524p5T17−1673683p6T18−70222p7T19+17172p8T20+462p9T21−153p10T22−2p11T23+p12T24 |
| 83 | 1+4T−122T2−708T3+8443T4+63416T5−306068T6−11486980T7−40820251T8+883434836T9+7461759074T10−26485489184T11−561153634257T12−26485489184pT13+7461759074p2T14+883434836p3T15−40820251p4T16−11486980p5T17−306068p6T18+63416p7T19+8443p8T20−708p9T21−122p10T22+4p11T23+p12T24 |
| 89 | 1−8T−58T2+728T3−973T4+23632T5−129268T6+18797016T7−143724283T8−1238591944T9+15083554514T10−16119693184T11+309081404535T12−16119693184pT13+15083554514p2T14−1238591944p3T15−143724283p4T16+18797016p5T17−129268p6T18+23632p7T19−973p8T20+728p9T21−58p10T22−8p11T23+p12T24 |
| 97 | 1−8T−74T2+920T3−349T4+8528T5−37716T6+26604056T7−210961627T8−2034639048T9+25099939298T10−6630666112T11+153071555463T12−6630666112pT13+25099939298p2T14−2034639048p3T15−210961627p4T16+26604056p5T17−37716p6T18+8528p7T19−349p8T20+920p9T21−74p10T22−8p11T23+p12T24 |
show more | |
show less | |
L(s)=p∏ j=1∏24(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−3.20712174088636956492492552182, −3.08809539918140425934697908220, −3.02964510995801303773866080692, −3.02672991394293779209960180779, −2.79757472611951062168404157234, −2.79530424399108927083643204803, −2.65832785419631649050235224406, −2.56996292500046844146149735898, −2.45331475648531914849479260377, −2.36580081380291123328599448126, −2.29504996597483172484529119019, −2.02103877084818031845182020650, −1.97417881063653645072917151907, −1.96905803319852487910584569694, −1.96607414579134336926880466710, −1.80912186519909524031343718907, −1.80488654398499356800401042462, −1.58835952916660353698575374839, −1.28218722185610260080672308533, −0.966415505681229254605213773632, −0.792948669759499669336840440010, −0.78844514174138766580760551541, −0.64211670183940325012502179823, −0.56054857004110585455592721097, −0.31125417577498656784524517216,
0.31125417577498656784524517216, 0.56054857004110585455592721097, 0.64211670183940325012502179823, 0.78844514174138766580760551541, 0.792948669759499669336840440010, 0.966415505681229254605213773632, 1.28218722185610260080672308533, 1.58835952916660353698575374839, 1.80488654398499356800401042462, 1.80912186519909524031343718907, 1.96607414579134336926880466710, 1.96905803319852487910584569694, 1.97417881063653645072917151907, 2.02103877084818031845182020650, 2.29504996597483172484529119019, 2.36580081380291123328599448126, 2.45331475648531914849479260377, 2.56996292500046844146149735898, 2.65832785419631649050235224406, 2.79530424399108927083643204803, 2.79757472611951062168404157234, 3.02672991394293779209960180779, 3.02964510995801303773866080692, 3.08809539918140425934697908220, 3.20712174088636956492492552182
Plot not available for L-functions of degree greater than 10.