Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [841,2,Mod(190,841)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(841, base_ring=CyclotomicField(14))
chi = DirichletCharacter(H, H._module([2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("841.190");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 841.d (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | 12.0.74049191673856.2 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 29) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
190.1 |
|
−0.373194 | − | 0.179721i | −0.258258 | + | 0.323845i | −1.14001 | − | 1.42952i | 0.900969 | + | 0.433884i | 0.154582 | − | 0.0744427i | 1.76350 | − | 2.21135i | 0.352871 | + | 1.54603i | 0.629384 | + | 2.75751i | −0.258258 | − | 0.323845i | ||||||||||||||||||||||||||||||||||||
190.2 | 2.17513 | + | 1.04749i | 1.50524 | − | 1.88751i | 2.38699 | + | 2.99318i | 0.900969 | + | 0.433884i | 5.25123 | − | 2.52886i | −1.76350 | + | 2.21135i | 0.982255 | + | 4.30354i | −0.629384 | − | 2.75751i | 1.50524 | + | 1.88751i | |||||||||||||||||||||||||||||||||||||
571.1 | −0.373194 | + | 0.179721i | −0.258258 | − | 0.323845i | −1.14001 | + | 1.42952i | 0.900969 | − | 0.433884i | 0.154582 | + | 0.0744427i | 1.76350 | + | 2.21135i | 0.352871 | − | 1.54603i | 0.629384 | − | 2.75751i | −0.258258 | + | 0.323845i | |||||||||||||||||||||||||||||||||||||
571.2 | 2.17513 | − | 1.04749i | 1.50524 | + | 1.88751i | 2.38699 | − | 2.99318i | 0.900969 | − | 0.433884i | 5.25123 | + | 2.52886i | −1.76350 | − | 2.21135i | 0.982255 | − | 4.30354i | −0.629384 | + | 2.75751i | 1.50524 | − | 1.88751i | |||||||||||||||||||||||||||||||||||||
574.1 | −1.50524 | + | 1.88751i | −0.537213 | + | 2.35368i | −0.851905 | − | 3.73244i | −0.623490 | + | 0.781831i | −3.63396 | − | 4.55685i | 0.629384 | − | 2.75751i | 3.97707 | + | 1.91526i | −2.54832 | − | 1.22721i | −0.537213 | − | 2.35368i | |||||||||||||||||||||||||||||||||||||
574.2 | 0.258258 | − | 0.323845i | 0.0921712 | − | 0.403828i | 0.406863 | + | 1.78258i | −0.623490 | + | 0.781831i | −0.106974 | − | 0.134141i | −0.629384 | + | 2.75751i | 1.42874 | + | 0.688047i | 2.54832 | + | 1.22721i | 0.0921712 | + | 0.403828i | |||||||||||||||||||||||||||||||||||||
605.1 | −0.0921712 | + | 0.403828i | 0.373194 | − | 0.179721i | 1.64736 | + | 0.793325i | 0.222521 | − | 0.974928i | 0.0381786 | + | 0.167271i | −2.54832 | + | 1.22721i | −0.988722 | + | 1.23982i | −1.76350 | + | 2.21135i | 0.373194 | + | 0.179721i | |||||||||||||||||||||||||||||||||||||
605.2 | 0.537213 | − | 2.35368i | −2.17513 | + | 1.04749i | −3.44929 | − | 1.66109i | 0.222521 | − | 0.974928i | 1.29695 | + | 5.68230i | 2.54832 | − | 1.22721i | −2.75222 | + | 3.45117i | 1.76350 | − | 2.21135i | −2.17513 | − | 1.04749i | |||||||||||||||||||||||||||||||||||||
645.1 | −0.0921712 | − | 0.403828i | 0.373194 | + | 0.179721i | 1.64736 | − | 0.793325i | 0.222521 | + | 0.974928i | 0.0381786 | − | 0.167271i | −2.54832 | − | 1.22721i | −0.988722 | − | 1.23982i | −1.76350 | − | 2.21135i | 0.373194 | − | 0.179721i | |||||||||||||||||||||||||||||||||||||
645.2 | 0.537213 | + | 2.35368i | −2.17513 | − | 1.04749i | −3.44929 | + | 1.66109i | 0.222521 | + | 0.974928i | 1.29695 | − | 5.68230i | 2.54832 | + | 1.22721i | −2.75222 | − | 3.45117i | 1.76350 | + | 2.21135i | −2.17513 | + | 1.04749i | |||||||||||||||||||||||||||||||||||||
778.1 | −1.50524 | − | 1.88751i | −0.537213 | − | 2.35368i | −0.851905 | + | 3.73244i | −0.623490 | − | 0.781831i | −3.63396 | + | 4.55685i | 0.629384 | + | 2.75751i | 3.97707 | − | 1.91526i | −2.54832 | + | 1.22721i | −0.537213 | + | 2.35368i | |||||||||||||||||||||||||||||||||||||
778.2 | 0.258258 | + | 0.323845i | 0.0921712 | + | 0.403828i | 0.406863 | − | 1.78258i | −0.623490 | − | 0.781831i | −0.106974 | + | 0.134141i | −0.629384 | − | 2.75751i | 1.42874 | − | 0.688047i | 2.54832 | − | 1.22721i | 0.0921712 | − | 0.403828i | |||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
29.d | even | 7 | 5 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 841.2.d.j | 12 | |
29.b | even | 2 | 1 | 841.2.d.f | 12 | ||
29.c | odd | 4 | 2 | 841.2.e.k | 24 | ||
29.d | even | 7 | 1 | 29.2.a.a | ✓ | 2 | |
29.d | even | 7 | 5 | inner | 841.2.d.j | 12 | |
29.e | even | 14 | 1 | 841.2.a.d | 2 | ||
29.e | even | 14 | 5 | 841.2.d.f | 12 | ||
29.f | odd | 28 | 2 | 841.2.b.a | 4 | ||
29.f | odd | 28 | 10 | 841.2.e.k | 24 | ||
87.h | odd | 14 | 1 | 7569.2.a.c | 2 | ||
87.j | odd | 14 | 1 | 261.2.a.d | 2 | ||
116.j | odd | 14 | 1 | 464.2.a.h | 2 | ||
145.n | even | 14 | 1 | 725.2.a.b | 2 | ||
145.p | odd | 28 | 2 | 725.2.b.b | 4 | ||
203.n | odd | 14 | 1 | 1421.2.a.j | 2 | ||
232.p | odd | 14 | 1 | 1856.2.a.w | 2 | ||
232.s | even | 14 | 1 | 1856.2.a.r | 2 | ||
319.m | odd | 14 | 1 | 3509.2.a.j | 2 | ||
348.s | even | 14 | 1 | 4176.2.a.bq | 2 | ||
377.w | even | 14 | 1 | 4901.2.a.g | 2 | ||
435.w | odd | 14 | 1 | 6525.2.a.o | 2 | ||
493.p | even | 14 | 1 | 8381.2.a.e | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
29.2.a.a | ✓ | 2 | 29.d | even | 7 | 1 | |
261.2.a.d | 2 | 87.j | odd | 14 | 1 | ||
464.2.a.h | 2 | 116.j | odd | 14 | 1 | ||
725.2.a.b | 2 | 145.n | even | 14 | 1 | ||
725.2.b.b | 4 | 145.p | odd | 28 | 2 | ||
841.2.a.d | 2 | 29.e | even | 14 | 1 | ||
841.2.b.a | 4 | 29.f | odd | 28 | 2 | ||
841.2.d.f | 12 | 29.b | even | 2 | 1 | ||
841.2.d.f | 12 | 29.e | even | 14 | 5 | ||
841.2.d.j | 12 | 1.a | even | 1 | 1 | trivial | |
841.2.d.j | 12 | 29.d | even | 7 | 5 | inner | |
841.2.e.k | 24 | 29.c | odd | 4 | 2 | ||
841.2.e.k | 24 | 29.f | odd | 28 | 10 | ||
1421.2.a.j | 2 | 203.n | odd | 14 | 1 | ||
1856.2.a.r | 2 | 232.s | even | 14 | 1 | ||
1856.2.a.w | 2 | 232.p | odd | 14 | 1 | ||
3509.2.a.j | 2 | 319.m | odd | 14 | 1 | ||
4176.2.a.bq | 2 | 348.s | even | 14 | 1 | ||
4901.2.a.g | 2 | 377.w | even | 14 | 1 | ||
6525.2.a.o | 2 | 435.w | odd | 14 | 1 | ||
7569.2.a.c | 2 | 87.h | odd | 14 | 1 | ||
8381.2.a.e | 2 | 493.p | even | 14 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .