L(s) = 1 | + (−0.373 + 0.179i)2-s + (−0.258 − 0.323i)3-s + (−1.14 + 1.42i)4-s + (0.900 − 0.433i)5-s + (0.154 + 0.0744i)6-s + (1.76 + 2.21i)7-s + (0.352 − 1.54i)8-s + (0.629 − 2.75i)9-s + (−0.258 + 0.323i)10-s + (−0.537 − 2.35i)11-s + 0.757·12-s + (−0.406 − 1.78i)13-s + (−1.05 − 0.508i)14-s + (−0.373 − 0.179i)15-s + (−0.667 − 2.92i)16-s − 4.82·17-s + ⋯ |
L(s) = 1 | + (−0.263 + 0.127i)2-s + (−0.149 − 0.186i)3-s + (−0.570 + 0.714i)4-s + (0.402 − 0.194i)5-s + (0.0631 + 0.0303i)6-s + (0.666 + 0.835i)7-s + (0.124 − 0.546i)8-s + (0.209 − 0.919i)9-s + (−0.0816 + 0.102i)10-s + (−0.161 − 0.709i)11-s + 0.218·12-s + (−0.112 − 0.494i)13-s + (−0.282 − 0.135i)14-s + (−0.0963 − 0.0464i)15-s + (−0.166 − 0.731i)16-s − 1.17·17-s + ⋯ |
Λ(s)=(=(841s/2ΓC(s)L(s)(0.897+0.440i)Λ(2−s)
Λ(s)=(=(841s/2ΓC(s+1/2)L(s)(0.897+0.440i)Λ(1−s)
Degree: |
2 |
Conductor: |
841
= 292
|
Sign: |
0.897+0.440i
|
Analytic conductor: |
6.71541 |
Root analytic conductor: |
2.59141 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ841(571,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 841, ( :1/2), 0.897+0.440i)
|
Particular Values
L(1) |
≈ |
1.19128−0.276771i |
L(21) |
≈ |
1.19128−0.276771i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 29 | 1 |
good | 2 | 1+(0.373−0.179i)T+(1.24−1.56i)T2 |
| 3 | 1+(0.258+0.323i)T+(−0.667+2.92i)T2 |
| 5 | 1+(−0.900+0.433i)T+(3.11−3.90i)T2 |
| 7 | 1+(−1.76−2.21i)T+(−1.55+6.82i)T2 |
| 11 | 1+(0.537+2.35i)T+(−9.91+4.77i)T2 |
| 13 | 1+(0.406+1.78i)T+(−11.7+5.64i)T2 |
| 17 | 1+4.82T+17T2 |
| 19 | 1+(−3.74+4.69i)T+(−4.22−18.5i)T2 |
| 23 | 1+(−6.89−3.32i)T+(14.3+17.9i)T2 |
| 31 | 1+(−3.66+1.76i)T+(19.3−24.2i)T2 |
| 37 | 1+(−0.890+3.89i)T+(−33.3−16.0i)T2 |
| 41 | 1−12.4T+41T2 |
| 43 | 1+(5.77+2.78i)T+(26.8+33.6i)T2 |
| 47 | 1+(1.16+5.11i)T+(−42.3+20.3i)T2 |
| 53 | 1+(−6.74+3.24i)T+(33.0−41.4i)T2 |
| 59 | 1−7.65T+59T2 |
| 61 | 1+(−0.516−0.647i)T+(−13.5+59.4i)T2 |
| 67 | 1+(−1.25+5.51i)T+(−60.3−29.0i)T2 |
| 71 | 1+(−0.705−3.09i)T+(−63.9+30.8i)T2 |
| 73 | 1+(3.60+1.73i)T+(45.5+57.0i)T2 |
| 79 | 1+(0.0921−0.403i)T+(−71.1−34.2i)T2 |
| 83 | 1+(2.28−2.85i)T+(−18.4−80.9i)T2 |
| 89 | 1+(4.04−1.94i)T+(55.4−69.5i)T2 |
| 97 | 1+(7.78−9.76i)T+(−21.5−94.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.818932961463903689153006710391, −9.014505499256111663608859110819, −8.748850805193870397906731697995, −7.62241793973238226860682984167, −6.83628538504270198013161070106, −5.63948017770207630351029436899, −4.93010016344318944809037237290, −3.66901919993013094405462246209, −2.56996292500046844146149735898, −0.792948669759499669336840440010,
1.28218722185610260080672308533, 2.36580081380291123328599448126, 4.40210407870455286831331859621, 4.66192695467383077881124275538, 5.75768296274735442371573316212, 6.87581863788162857649625049384, 7.77065377149418489698354946394, 8.655917747233898463925237371638, 9.688660482120982748880229556752, 10.21888973929337115282511083160