L(s) = 1 | + (−0.373 + 0.179i)2-s + (−0.258 − 0.323i)3-s + (−1.14 + 1.42i)4-s + (0.900 − 0.433i)5-s + (0.154 + 0.0744i)6-s + (1.76 + 2.21i)7-s + (0.352 − 1.54i)8-s + (0.629 − 2.75i)9-s + (−0.258 + 0.323i)10-s + (−0.537 − 2.35i)11-s + 0.757·12-s + (−0.406 − 1.78i)13-s + (−1.05 − 0.508i)14-s + (−0.373 − 0.179i)15-s + (−0.667 − 2.92i)16-s − 4.82·17-s + ⋯ |
L(s) = 1 | + (−0.263 + 0.127i)2-s + (−0.149 − 0.186i)3-s + (−0.570 + 0.714i)4-s + (0.402 − 0.194i)5-s + (0.0631 + 0.0303i)6-s + (0.666 + 0.835i)7-s + (0.124 − 0.546i)8-s + (0.209 − 0.919i)9-s + (−0.0816 + 0.102i)10-s + (−0.161 − 0.709i)11-s + 0.218·12-s + (−0.112 − 0.494i)13-s + (−0.282 − 0.135i)14-s + (−0.0963 − 0.0464i)15-s + (−0.166 − 0.731i)16-s − 1.17·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.897 + 0.440i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.897 + 0.440i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.19128 - 0.276771i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.19128 - 0.276771i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 29 | \( 1 \) |
good | 2 | \( 1 + (0.373 - 0.179i)T + (1.24 - 1.56i)T^{2} \) |
| 3 | \( 1 + (0.258 + 0.323i)T + (-0.667 + 2.92i)T^{2} \) |
| 5 | \( 1 + (-0.900 + 0.433i)T + (3.11 - 3.90i)T^{2} \) |
| 7 | \( 1 + (-1.76 - 2.21i)T + (-1.55 + 6.82i)T^{2} \) |
| 11 | \( 1 + (0.537 + 2.35i)T + (-9.91 + 4.77i)T^{2} \) |
| 13 | \( 1 + (0.406 + 1.78i)T + (-11.7 + 5.64i)T^{2} \) |
| 17 | \( 1 + 4.82T + 17T^{2} \) |
| 19 | \( 1 + (-3.74 + 4.69i)T + (-4.22 - 18.5i)T^{2} \) |
| 23 | \( 1 + (-6.89 - 3.32i)T + (14.3 + 17.9i)T^{2} \) |
| 31 | \( 1 + (-3.66 + 1.76i)T + (19.3 - 24.2i)T^{2} \) |
| 37 | \( 1 + (-0.890 + 3.89i)T + (-33.3 - 16.0i)T^{2} \) |
| 41 | \( 1 - 12.4T + 41T^{2} \) |
| 43 | \( 1 + (5.77 + 2.78i)T + (26.8 + 33.6i)T^{2} \) |
| 47 | \( 1 + (1.16 + 5.11i)T + (-42.3 + 20.3i)T^{2} \) |
| 53 | \( 1 + (-6.74 + 3.24i)T + (33.0 - 41.4i)T^{2} \) |
| 59 | \( 1 - 7.65T + 59T^{2} \) |
| 61 | \( 1 + (-0.516 - 0.647i)T + (-13.5 + 59.4i)T^{2} \) |
| 67 | \( 1 + (-1.25 + 5.51i)T + (-60.3 - 29.0i)T^{2} \) |
| 71 | \( 1 + (-0.705 - 3.09i)T + (-63.9 + 30.8i)T^{2} \) |
| 73 | \( 1 + (3.60 + 1.73i)T + (45.5 + 57.0i)T^{2} \) |
| 79 | \( 1 + (0.0921 - 0.403i)T + (-71.1 - 34.2i)T^{2} \) |
| 83 | \( 1 + (2.28 - 2.85i)T + (-18.4 - 80.9i)T^{2} \) |
| 89 | \( 1 + (4.04 - 1.94i)T + (55.4 - 69.5i)T^{2} \) |
| 97 | \( 1 + (7.78 - 9.76i)T + (-21.5 - 94.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.818932961463903689153006710391, −9.014505499256111663608859110819, −8.748850805193870397906731697995, −7.62241793973238226860682984167, −6.83628538504270198013161070106, −5.63948017770207630351029436899, −4.93010016344318944809037237290, −3.66901919993013094405462246209, −2.56996292500046844146149735898, −0.792948669759499669336840440010,
1.28218722185610260080672308533, 2.36580081380291123328599448126, 4.40210407870455286831331859621, 4.66192695467383077881124275538, 5.75768296274735442371573316212, 6.87581863788162857649625049384, 7.77065377149418489698354946394, 8.655917747233898463925237371638, 9.688660482120982748880229556752, 10.21888973929337115282511083160