L(s) = 1 | + (−0.373 − 0.179i)2-s + (−0.258 + 0.323i)3-s + (−1.14 − 1.42i)4-s + (0.900 + 0.433i)5-s + (0.154 − 0.0744i)6-s + (1.76 − 2.21i)7-s + (0.352 + 1.54i)8-s + (0.629 + 2.75i)9-s + (−0.258 − 0.323i)10-s + (−0.537 + 2.35i)11-s + 0.757·12-s + (−0.406 + 1.78i)13-s + (−1.05 + 0.508i)14-s + (−0.373 + 0.179i)15-s + (−0.667 + 2.92i)16-s − 4.82·17-s + ⋯ |
L(s) = 1 | + (−0.263 − 0.127i)2-s + (−0.149 + 0.186i)3-s + (−0.570 − 0.714i)4-s + (0.402 + 0.194i)5-s + (0.0631 − 0.0303i)6-s + (0.666 − 0.835i)7-s + (0.124 + 0.546i)8-s + (0.209 + 0.919i)9-s + (−0.0816 − 0.102i)10-s + (−0.161 + 0.709i)11-s + 0.218·12-s + (−0.112 + 0.494i)13-s + (−0.282 + 0.135i)14-s + (−0.0963 + 0.0464i)15-s + (−0.166 + 0.731i)16-s − 1.17·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.897 - 0.440i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.897 - 0.440i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.19128 + 0.276771i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.19128 + 0.276771i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 29 | \( 1 \) |
good | 2 | \( 1 + (0.373 + 0.179i)T + (1.24 + 1.56i)T^{2} \) |
| 3 | \( 1 + (0.258 - 0.323i)T + (-0.667 - 2.92i)T^{2} \) |
| 5 | \( 1 + (-0.900 - 0.433i)T + (3.11 + 3.90i)T^{2} \) |
| 7 | \( 1 + (-1.76 + 2.21i)T + (-1.55 - 6.82i)T^{2} \) |
| 11 | \( 1 + (0.537 - 2.35i)T + (-9.91 - 4.77i)T^{2} \) |
| 13 | \( 1 + (0.406 - 1.78i)T + (-11.7 - 5.64i)T^{2} \) |
| 17 | \( 1 + 4.82T + 17T^{2} \) |
| 19 | \( 1 + (-3.74 - 4.69i)T + (-4.22 + 18.5i)T^{2} \) |
| 23 | \( 1 + (-6.89 + 3.32i)T + (14.3 - 17.9i)T^{2} \) |
| 31 | \( 1 + (-3.66 - 1.76i)T + (19.3 + 24.2i)T^{2} \) |
| 37 | \( 1 + (-0.890 - 3.89i)T + (-33.3 + 16.0i)T^{2} \) |
| 41 | \( 1 - 12.4T + 41T^{2} \) |
| 43 | \( 1 + (5.77 - 2.78i)T + (26.8 - 33.6i)T^{2} \) |
| 47 | \( 1 + (1.16 - 5.11i)T + (-42.3 - 20.3i)T^{2} \) |
| 53 | \( 1 + (-6.74 - 3.24i)T + (33.0 + 41.4i)T^{2} \) |
| 59 | \( 1 - 7.65T + 59T^{2} \) |
| 61 | \( 1 + (-0.516 + 0.647i)T + (-13.5 - 59.4i)T^{2} \) |
| 67 | \( 1 + (-1.25 - 5.51i)T + (-60.3 + 29.0i)T^{2} \) |
| 71 | \( 1 + (-0.705 + 3.09i)T + (-63.9 - 30.8i)T^{2} \) |
| 73 | \( 1 + (3.60 - 1.73i)T + (45.5 - 57.0i)T^{2} \) |
| 79 | \( 1 + (0.0921 + 0.403i)T + (-71.1 + 34.2i)T^{2} \) |
| 83 | \( 1 + (2.28 + 2.85i)T + (-18.4 + 80.9i)T^{2} \) |
| 89 | \( 1 + (4.04 + 1.94i)T + (55.4 + 69.5i)T^{2} \) |
| 97 | \( 1 + (7.78 + 9.76i)T + (-21.5 + 94.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.21888973929337115282511083160, −9.688660482120982748880229556752, −8.655917747233898463925237371638, −7.77065377149418489698354946394, −6.87581863788162857649625049384, −5.75768296274735442371573316212, −4.66192695467383077881124275538, −4.40210407870455286831331859621, −2.36580081380291123328599448126, −1.28218722185610260080672308533,
0.792948669759499669336840440010, 2.56996292500046844146149735898, 3.66901919993013094405462246209, 4.93010016344318944809037237290, 5.63948017770207630351029436899, 6.83628538504270198013161070106, 7.62241793973238226860682984167, 8.748850805193870397906731697995, 9.014505499256111663608859110819, 9.818932961463903689153006710391