L(s) = 1 | + (2.17 + 1.04i)2-s + (1.50 − 1.88i)3-s + (2.38 + 2.99i)4-s + (0.900 + 0.433i)5-s + (5.25 − 2.52i)6-s + (−1.76 + 2.21i)7-s + (0.982 + 4.30i)8-s + (−0.629 − 2.75i)9-s + (1.50 + 1.88i)10-s + (0.0921 − 0.403i)11-s + 9.24·12-s + (0.851 − 3.73i)13-s + (−6.15 + 2.96i)14-s + (2.17 − 1.04i)15-s + (−0.667 + 2.92i)16-s + 0.828·17-s + ⋯ |
L(s) = 1 | + (1.53 + 0.740i)2-s + (0.869 − 1.08i)3-s + (1.19 + 1.49i)4-s + (0.402 + 0.194i)5-s + (2.14 − 1.03i)6-s + (−0.666 + 0.835i)7-s + (0.347 + 1.52i)8-s + (−0.209 − 0.919i)9-s + (0.475 + 0.596i)10-s + (0.0277 − 0.121i)11-s + 2.66·12-s + (0.236 − 1.03i)13-s + (−1.64 + 0.791i)14-s + (0.561 − 0.270i)15-s + (−0.166 + 0.731i)16-s + 0.200·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.897 - 0.440i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.897 - 0.440i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(4.62519 + 1.07457i\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.62519 + 1.07457i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 29 | \( 1 \) |
good | 2 | \( 1 + (-2.17 - 1.04i)T + (1.24 + 1.56i)T^{2} \) |
| 3 | \( 1 + (-1.50 + 1.88i)T + (-0.667 - 2.92i)T^{2} \) |
| 5 | \( 1 + (-0.900 - 0.433i)T + (3.11 + 3.90i)T^{2} \) |
| 7 | \( 1 + (1.76 - 2.21i)T + (-1.55 - 6.82i)T^{2} \) |
| 11 | \( 1 + (-0.0921 + 0.403i)T + (-9.91 - 4.77i)T^{2} \) |
| 13 | \( 1 + (-0.851 + 3.73i)T + (-11.7 - 5.64i)T^{2} \) |
| 17 | \( 1 - 0.828T + 17T^{2} \) |
| 19 | \( 1 + (-3.74 - 4.69i)T + (-4.22 + 18.5i)T^{2} \) |
| 23 | \( 1 + (3.29 - 1.58i)T + (14.3 - 17.9i)T^{2} \) |
| 31 | \( 1 + (9.07 + 4.36i)T + (19.3 + 24.2i)T^{2} \) |
| 37 | \( 1 + (-0.890 - 3.89i)T + (-33.3 + 16.0i)T^{2} \) |
| 41 | \( 1 + 4.48T + 41T^{2} \) |
| 43 | \( 1 + (3.23 - 1.55i)T + (26.8 - 33.6i)T^{2} \) |
| 47 | \( 1 + (-0.721 + 3.16i)T + (-42.3 - 20.3i)T^{2} \) |
| 53 | \( 1 + (8.54 + 4.11i)T + (33.0 + 41.4i)T^{2} \) |
| 59 | \( 1 + 3.65T + 59T^{2} \) |
| 61 | \( 1 + (3.01 - 3.77i)T + (-13.5 - 59.4i)T^{2} \) |
| 67 | \( 1 + (1.25 + 5.51i)T + (-60.3 + 29.0i)T^{2} \) |
| 71 | \( 1 + (-1.96 + 8.60i)T + (-63.9 - 30.8i)T^{2} \) |
| 73 | \( 1 + (3.60 - 1.73i)T + (45.5 - 57.0i)T^{2} \) |
| 79 | \( 1 + (-0.537 - 2.35i)T + (-71.1 + 34.2i)T^{2} \) |
| 83 | \( 1 + (-4.77 - 5.98i)T + (-18.4 + 80.9i)T^{2} \) |
| 89 | \( 1 + (-11.2 - 5.41i)T + (55.4 + 69.5i)T^{2} \) |
| 97 | \( 1 + (-2.79 - 3.50i)T + (-21.5 + 94.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.18566635862932477357101138028, −9.213168689471578030513790756434, −7.961891197116207900582142011151, −7.70785488256712084057939062605, −6.51969799423836953646575037183, −5.97476543282247582651906085788, −5.26437576886206323475558330964, −3.60835081971255033958820115165, −3.02964510995801303773866080692, −1.96607414579134336926880466710,
1.80488654398499356800401042462, 3.08809539918140425934697908220, 3.70490937671561437044981485088, 4.43911128322598169191444851060, 5.26328586233941450851222247546, 6.38095633382134218879814941976, 7.34749213611770537226741174760, 8.905346078584288620943674890727, 9.516375633684627774869056152274, 10.23928543007227661426759539969