L(s) = 1 | − 1.58i·2-s + (−0.139 − 0.139i)3-s − 0.511·4-s + (−2.23 − 0.0672i)5-s + (−0.221 + 0.221i)6-s − 0.548·7-s − 2.35i·8-s − 2.96i·9-s + (−0.106 + 3.54i)10-s + (−0.108 − 0.108i)11-s + (0.0713 + 0.0713i)12-s + 0.868i·14-s + (0.302 + 0.321i)15-s − 4.76·16-s + (2.22 + 2.22i)17-s − 4.69·18-s + ⋯ |
L(s) = 1 | − 1.12i·2-s + (−0.0805 − 0.0805i)3-s − 0.255·4-s + (−0.999 − 0.0300i)5-s + (−0.0902 + 0.0902i)6-s − 0.207·7-s − 0.834i·8-s − 0.987i·9-s + (−0.0337 + 1.12i)10-s + (−0.0326 − 0.0326i)11-s + (0.0205 + 0.0205i)12-s + 0.232i·14-s + (0.0780 + 0.0829i)15-s − 1.19·16-s + (0.539 + 0.539i)17-s − 1.10·18-s + ⋯ |
Λ(s)=(=(845s/2ΓC(s)L(s)(−0.638−0.769i)Λ(2−s)
Λ(s)=(=(845s/2ΓC(s+1/2)L(s)(−0.638−0.769i)Λ(1−s)
Degree: |
2 |
Conductor: |
845
= 5⋅132
|
Sign: |
−0.638−0.769i
|
Analytic conductor: |
6.74735 |
Root analytic conductor: |
2.59756 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ845(408,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 845, ( :1/2), −0.638−0.769i)
|
Particular Values
L(1) |
≈ |
0.258375+0.550492i |
L(21) |
≈ |
0.258375+0.550492i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(2.23+0.0672i)T |
| 13 | 1 |
good | 2 | 1+1.58iT−2T2 |
| 3 | 1+(0.139+0.139i)T+3iT2 |
| 7 | 1+0.548T+7T2 |
| 11 | 1+(0.108+0.108i)T+11iT2 |
| 17 | 1+(−2.22−2.22i)T+17iT2 |
| 19 | 1+(3.22+3.22i)T+19iT2 |
| 23 | 1+(2.50−2.50i)T−23iT2 |
| 29 | 1+2.34iT−29T2 |
| 31 | 1+(6.60−6.60i)T−31iT2 |
| 37 | 1+6.80T+37T2 |
| 41 | 1+(−2.53+2.53i)T−41iT2 |
| 43 | 1+(5.02−5.02i)T−43iT2 |
| 47 | 1+9.13T+47T2 |
| 53 | 1+(3.70+3.70i)T+53iT2 |
| 59 | 1+(−2.69+2.69i)T−59iT2 |
| 61 | 1−7.84T+61T2 |
| 67 | 1+4.89iT−67T2 |
| 71 | 1+(−11.0+11.0i)T−71iT2 |
| 73 | 1−3.91iT−73T2 |
| 79 | 1+11.1iT−79T2 |
| 83 | 1−13.4T+83T2 |
| 89 | 1+(−6.43+6.43i)T−89iT2 |
| 97 | 1−7.57iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.813531517488949833773241159383, −9.022384412816950880108084249566, −8.073926548400572392854488028879, −6.98949670456398765665117019247, −6.35498362077324199165232437139, −4.86726397109504855834782859789, −3.64698611538687796641773578112, −3.32107051303554426607471307149, −1.73908522101519657724997704677, −0.28607700011836006863388936583,
2.18523734740445213715844425393, 3.62104387301692896998334853136, 4.75848074565500040057226147084, 5.52699459590328034461269974809, 6.57956571689878017282733165414, 7.36266807977105522439502174332, 8.047759483821567392365443218194, 8.562644107768739774515673174767, 9.852027598829205780719231582183, 10.82799506168554732527381515586