Properties

Label 2-8450-1.1-c1-0-240
Degree $2$
Conductor $8450$
Sign $-1$
Analytic cond. $67.4735$
Root an. cond. $8.21423$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 2.89·3-s + 4-s + 2.89·6-s − 4.38·7-s + 8-s + 5.38·9-s − 2·11-s + 2.89·12-s − 4.38·14-s + 16-s − 5.86·17-s + 5.38·18-s + 0.973·19-s − 12.6·21-s − 2·22-s − 7.79·23-s + 2.89·24-s + 6.89·27-s − 4.38·28-s + 0.973·29-s + 1.79·31-s + 32-s − 5.79·33-s − 5.86·34-s + 5.38·36-s − 0.591·37-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.67·3-s + 0.5·4-s + 1.18·6-s − 1.65·7-s + 0.353·8-s + 1.79·9-s − 0.603·11-s + 0.835·12-s − 1.17·14-s + 0.250·16-s − 1.42·17-s + 1.26·18-s + 0.223·19-s − 2.76·21-s − 0.426·22-s − 1.62·23-s + 0.590·24-s + 1.32·27-s − 0.828·28-s + 0.180·29-s + 0.321·31-s + 0.176·32-s − 1.00·33-s − 1.00·34-s + 0.896·36-s − 0.0972·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8450\)    =    \(2 \cdot 5^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(67.4735\)
Root analytic conductor: \(8.21423\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8450,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 \)
13 \( 1 \)
good3 \( 1 - 2.89T + 3T^{2} \)
7 \( 1 + 4.38T + 7T^{2} \)
11 \( 1 + 2T + 11T^{2} \)
17 \( 1 + 5.86T + 17T^{2} \)
19 \( 1 - 0.973T + 19T^{2} \)
23 \( 1 + 7.79T + 23T^{2} \)
29 \( 1 - 0.973T + 29T^{2} \)
31 \( 1 - 1.79T + 31T^{2} \)
37 \( 1 + 0.591T + 37T^{2} \)
41 \( 1 + 4.81T + 41T^{2} \)
43 \( 1 + 4.68T + 43T^{2} \)
47 \( 1 - 0.381T + 47T^{2} \)
53 \( 1 + 7.79T + 53T^{2} \)
59 \( 1 - 0.973T + 59T^{2} \)
61 \( 1 + 0.817T + 61T^{2} \)
67 \( 1 - 1.79T + 67T^{2} \)
71 \( 1 - 3.92T + 71T^{2} \)
73 \( 1 + 6T + 73T^{2} \)
79 \( 1 - 10.9T + 79T^{2} \)
83 \( 1 + 6.97T + 83T^{2} \)
89 \( 1 + 0.973T + 89T^{2} \)
97 \( 1 + 18.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.48056836847830329810809883224, −6.63400954704746555889226548186, −6.34622676821150826633455054453, −5.27552121438622773729162193973, −4.27492596803446109252984822230, −3.76529279397457404677385463441, −3.04879631076630862538005337193, −2.55211502194329041332436690479, −1.80262589868690942155437903756, 0, 1.80262589868690942155437903756, 2.55211502194329041332436690479, 3.04879631076630862538005337193, 3.76529279397457404677385463441, 4.27492596803446109252984822230, 5.27552121438622773729162193973, 6.34622676821150826633455054453, 6.63400954704746555889226548186, 7.48056836847830329810809883224

Graph of the $Z$-function along the critical line