Properties

Label 8450.2.a.cc.1.3
Level $8450$
Weight $2$
Character 8450.1
Self dual yes
Analytic conductor $67.474$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8450,2,Mod(1,8450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8450, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8450.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8450 = 2 \cdot 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8450.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.4735897080\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.940.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 7x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.89511\) of defining polynomial
Character \(\chi\) \(=\) 8450.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +2.89511 q^{3} +1.00000 q^{4} +2.89511 q^{6} -4.38164 q^{7} +1.00000 q^{8} +5.38164 q^{9} -2.00000 q^{11} +2.89511 q^{12} -4.38164 q^{14} +1.00000 q^{16} -5.86818 q^{17} +5.38164 q^{18} +0.973070 q^{19} -12.6853 q^{21} -2.00000 q^{22} -7.79021 q^{23} +2.89511 q^{24} +6.89511 q^{27} -4.38164 q^{28} +0.973070 q^{29} +1.79021 q^{31} +1.00000 q^{32} -5.79021 q^{33} -5.86818 q^{34} +5.38164 q^{36} -0.591429 q^{37} +0.973070 q^{38} -4.81714 q^{41} -12.6853 q^{42} -4.68532 q^{43} -2.00000 q^{44} -7.79021 q^{46} +0.381642 q^{47} +2.89511 q^{48} +12.1988 q^{49} -16.9890 q^{51} -7.79021 q^{53} +6.89511 q^{54} -4.38164 q^{56} +2.81714 q^{57} +0.973070 q^{58} +0.973070 q^{59} -0.817143 q^{61} +1.79021 q^{62} -23.5804 q^{63} +1.00000 q^{64} -5.79021 q^{66} +1.79021 q^{67} -5.86818 q^{68} -22.5535 q^{69} +3.92204 q^{71} +5.38164 q^{72} -6.00000 q^{73} -0.591429 q^{74} +0.973070 q^{76} +8.76328 q^{77} +10.9731 q^{79} +3.81714 q^{81} -4.81714 q^{82} -6.97307 q^{83} -12.6853 q^{84} -4.68532 q^{86} +2.81714 q^{87} -2.00000 q^{88} -0.973070 q^{89} -7.79021 q^{92} +5.18286 q^{93} +0.381642 q^{94} +2.89511 q^{96} -18.6074 q^{97} +12.1988 q^{98} -10.7633 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 3 q^{4} - 2 q^{7} + 3 q^{8} + 5 q^{9} - 6 q^{11} - 2 q^{14} + 3 q^{16} - 4 q^{17} + 5 q^{18} - 2 q^{19} - 12 q^{21} - 6 q^{22} - 6 q^{23} + 12 q^{27} - 2 q^{28} - 2 q^{29} - 12 q^{31} + 3 q^{32}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 2.89511 1.67149 0.835745 0.549117i \(-0.185036\pi\)
0.835745 + 0.549117i \(0.185036\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 2.89511 1.18192
\(7\) −4.38164 −1.65610 −0.828052 0.560651i \(-0.810551\pi\)
−0.828052 + 0.560651i \(0.810551\pi\)
\(8\) 1.00000 0.353553
\(9\) 5.38164 1.79388
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 2.89511 0.835745
\(13\) 0 0
\(14\) −4.38164 −1.17104
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −5.86818 −1.42324 −0.711621 0.702564i \(-0.752039\pi\)
−0.711621 + 0.702564i \(0.752039\pi\)
\(18\) 5.38164 1.26847
\(19\) 0.973070 0.223238 0.111619 0.993751i \(-0.464396\pi\)
0.111619 + 0.993751i \(0.464396\pi\)
\(20\) 0 0
\(21\) −12.6853 −2.76816
\(22\) −2.00000 −0.426401
\(23\) −7.79021 −1.62437 −0.812186 0.583399i \(-0.801722\pi\)
−0.812186 + 0.583399i \(0.801722\pi\)
\(24\) 2.89511 0.590961
\(25\) 0 0
\(26\) 0 0
\(27\) 6.89511 1.32696
\(28\) −4.38164 −0.828052
\(29\) 0.973070 0.180695 0.0903473 0.995910i \(-0.471202\pi\)
0.0903473 + 0.995910i \(0.471202\pi\)
\(30\) 0 0
\(31\) 1.79021 0.321532 0.160766 0.986993i \(-0.448604\pi\)
0.160766 + 0.986993i \(0.448604\pi\)
\(32\) 1.00000 0.176777
\(33\) −5.79021 −1.00795
\(34\) −5.86818 −1.00638
\(35\) 0 0
\(36\) 5.38164 0.896940
\(37\) −0.591429 −0.0972303 −0.0486151 0.998818i \(-0.515481\pi\)
−0.0486151 + 0.998818i \(0.515481\pi\)
\(38\) 0.973070 0.157853
\(39\) 0 0
\(40\) 0 0
\(41\) −4.81714 −0.752311 −0.376156 0.926556i \(-0.622754\pi\)
−0.376156 + 0.926556i \(0.622754\pi\)
\(42\) −12.6853 −1.95739
\(43\) −4.68532 −0.714505 −0.357252 0.934008i \(-0.616286\pi\)
−0.357252 + 0.934008i \(0.616286\pi\)
\(44\) −2.00000 −0.301511
\(45\) 0 0
\(46\) −7.79021 −1.14860
\(47\) 0.381642 0.0556682 0.0278341 0.999613i \(-0.491139\pi\)
0.0278341 + 0.999613i \(0.491139\pi\)
\(48\) 2.89511 0.417873
\(49\) 12.1988 1.74268
\(50\) 0 0
\(51\) −16.9890 −2.37894
\(52\) 0 0
\(53\) −7.79021 −1.07007 −0.535034 0.844831i \(-0.679701\pi\)
−0.535034 + 0.844831i \(0.679701\pi\)
\(54\) 6.89511 0.938305
\(55\) 0 0
\(56\) −4.38164 −0.585522
\(57\) 2.81714 0.373140
\(58\) 0.973070 0.127770
\(59\) 0.973070 0.126683 0.0633415 0.997992i \(-0.479824\pi\)
0.0633415 + 0.997992i \(0.479824\pi\)
\(60\) 0 0
\(61\) −0.817143 −0.104624 −0.0523122 0.998631i \(-0.516659\pi\)
−0.0523122 + 0.998631i \(0.516659\pi\)
\(62\) 1.79021 0.227357
\(63\) −23.5804 −2.97085
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −5.79021 −0.712726
\(67\) 1.79021 0.218709 0.109355 0.994003i \(-0.465122\pi\)
0.109355 + 0.994003i \(0.465122\pi\)
\(68\) −5.86818 −0.711621
\(69\) −22.5535 −2.71512
\(70\) 0 0
\(71\) 3.92204 0.465460 0.232730 0.972541i \(-0.425234\pi\)
0.232730 + 0.972541i \(0.425234\pi\)
\(72\) 5.38164 0.634233
\(73\) −6.00000 −0.702247 −0.351123 0.936329i \(-0.614200\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) −0.591429 −0.0687522
\(75\) 0 0
\(76\) 0.973070 0.111619
\(77\) 8.76328 0.998669
\(78\) 0 0
\(79\) 10.9731 1.23457 0.617283 0.786741i \(-0.288233\pi\)
0.617283 + 0.786741i \(0.288233\pi\)
\(80\) 0 0
\(81\) 3.81714 0.424127
\(82\) −4.81714 −0.531964
\(83\) −6.97307 −0.765394 −0.382697 0.923874i \(-0.625005\pi\)
−0.382697 + 0.923874i \(0.625005\pi\)
\(84\) −12.6853 −1.38408
\(85\) 0 0
\(86\) −4.68532 −0.505231
\(87\) 2.81714 0.302029
\(88\) −2.00000 −0.213201
\(89\) −0.973070 −0.103145 −0.0515726 0.998669i \(-0.516423\pi\)
−0.0515726 + 0.998669i \(0.516423\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −7.79021 −0.812186
\(93\) 5.18286 0.537437
\(94\) 0.381642 0.0393633
\(95\) 0 0
\(96\) 2.89511 0.295481
\(97\) −18.6074 −1.88929 −0.944645 0.328093i \(-0.893594\pi\)
−0.944645 + 0.328093i \(0.893594\pi\)
\(98\) 12.1988 1.23226
\(99\) −10.7633 −1.08175
\(100\) 0 0
\(101\) 14.3437 1.42725 0.713626 0.700527i \(-0.247052\pi\)
0.713626 + 0.700527i \(0.247052\pi\)
\(102\) −16.9890 −1.68216
\(103\) −9.73635 −0.959351 −0.479676 0.877446i \(-0.659246\pi\)
−0.479676 + 0.877446i \(0.659246\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −7.79021 −0.756652
\(107\) 5.79021 0.559761 0.279881 0.960035i \(-0.409705\pi\)
0.279881 + 0.960035i \(0.409705\pi\)
\(108\) 6.89511 0.663482
\(109\) 0.685320 0.0656417 0.0328209 0.999461i \(-0.489551\pi\)
0.0328209 + 0.999461i \(0.489551\pi\)
\(110\) 0 0
\(111\) −1.71225 −0.162519
\(112\) −4.38164 −0.414026
\(113\) −4.00000 −0.376288 −0.188144 0.982141i \(-0.560247\pi\)
−0.188144 + 0.982141i \(0.560247\pi\)
\(114\) 2.81714 0.263850
\(115\) 0 0
\(116\) 0.973070 0.0903473
\(117\) 0 0
\(118\) 0.973070 0.0895784
\(119\) 25.7122 2.35704
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) −0.817143 −0.0739806
\(123\) −13.9461 −1.25748
\(124\) 1.79021 0.160766
\(125\) 0 0
\(126\) −23.5804 −2.10071
\(127\) −11.7902 −1.04621 −0.523106 0.852268i \(-0.675227\pi\)
−0.523106 + 0.852268i \(0.675227\pi\)
\(128\) 1.00000 0.0883883
\(129\) −13.5645 −1.19429
\(130\) 0 0
\(131\) −16.9890 −1.48434 −0.742168 0.670214i \(-0.766202\pi\)
−0.742168 + 0.670214i \(0.766202\pi\)
\(132\) −5.79021 −0.503973
\(133\) −4.26365 −0.369705
\(134\) 1.79021 0.154651
\(135\) 0 0
\(136\) −5.86818 −0.503192
\(137\) 4.20979 0.359666 0.179833 0.983697i \(-0.442444\pi\)
0.179833 + 0.983697i \(0.442444\pi\)
\(138\) −22.5535 −1.91988
\(139\) −6.17185 −0.523490 −0.261745 0.965137i \(-0.584298\pi\)
−0.261745 + 0.965137i \(0.584298\pi\)
\(140\) 0 0
\(141\) 1.10489 0.0930488
\(142\) 3.92204 0.329130
\(143\) 0 0
\(144\) 5.38164 0.448470
\(145\) 0 0
\(146\) −6.00000 −0.496564
\(147\) 35.3168 2.91288
\(148\) −0.591429 −0.0486151
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) −15.5025 −1.26157 −0.630786 0.775957i \(-0.717268\pi\)
−0.630786 + 0.775957i \(0.717268\pi\)
\(152\) 0.973070 0.0789264
\(153\) −31.5804 −2.55313
\(154\) 8.76328 0.706166
\(155\) 0 0
\(156\) 0 0
\(157\) −8.97307 −0.716129 −0.358064 0.933697i \(-0.616563\pi\)
−0.358064 + 0.933697i \(0.616563\pi\)
\(158\) 10.9731 0.872971
\(159\) −22.5535 −1.78861
\(160\) 0 0
\(161\) 34.1339 2.69013
\(162\) 3.81714 0.299903
\(163\) −12.6074 −0.987484 −0.493742 0.869608i \(-0.664371\pi\)
−0.493742 + 0.869608i \(0.664371\pi\)
\(164\) −4.81714 −0.376156
\(165\) 0 0
\(166\) −6.97307 −0.541215
\(167\) 23.1609 1.79224 0.896120 0.443811i \(-0.146374\pi\)
0.896120 + 0.443811i \(0.146374\pi\)
\(168\) −12.6853 −0.978694
\(169\) 0 0
\(170\) 0 0
\(171\) 5.23672 0.400462
\(172\) −4.68532 −0.357252
\(173\) 19.7902 1.50462 0.752311 0.658808i \(-0.228939\pi\)
0.752311 + 0.658808i \(0.228939\pi\)
\(174\) 2.81714 0.213567
\(175\) 0 0
\(176\) −2.00000 −0.150756
\(177\) 2.81714 0.211749
\(178\) −0.973070 −0.0729347
\(179\) 6.17185 0.461306 0.230653 0.973036i \(-0.425914\pi\)
0.230653 + 0.973036i \(0.425914\pi\)
\(180\) 0 0
\(181\) −19.3706 −1.43981 −0.719904 0.694074i \(-0.755814\pi\)
−0.719904 + 0.694074i \(0.755814\pi\)
\(182\) 0 0
\(183\) −2.36571 −0.174879
\(184\) −7.79021 −0.574302
\(185\) 0 0
\(186\) 5.18286 0.380026
\(187\) 11.7364 0.858247
\(188\) 0.381642 0.0278341
\(189\) −30.2119 −2.19759
\(190\) 0 0
\(191\) −3.73635 −0.270353 −0.135177 0.990822i \(-0.543160\pi\)
−0.135177 + 0.990822i \(0.543160\pi\)
\(192\) 2.89511 0.208936
\(193\) 15.3706 1.10640 0.553201 0.833048i \(-0.313406\pi\)
0.553201 + 0.833048i \(0.313406\pi\)
\(194\) −18.6074 −1.33593
\(195\) 0 0
\(196\) 12.1988 0.871342
\(197\) 26.9890 1.92289 0.961443 0.275004i \(-0.0886790\pi\)
0.961443 + 0.275004i \(0.0886790\pi\)
\(198\) −10.7633 −0.764913
\(199\) 23.3168 1.65288 0.826441 0.563023i \(-0.190362\pi\)
0.826441 + 0.563023i \(0.190362\pi\)
\(200\) 0 0
\(201\) 5.18286 0.365571
\(202\) 14.3437 1.00922
\(203\) −4.26365 −0.299249
\(204\) −16.9890 −1.18947
\(205\) 0 0
\(206\) −9.73635 −0.678364
\(207\) −41.9241 −2.91393
\(208\) 0 0
\(209\) −1.94614 −0.134617
\(210\) 0 0
\(211\) 15.3547 1.05706 0.528531 0.848914i \(-0.322743\pi\)
0.528531 + 0.848914i \(0.322743\pi\)
\(212\) −7.79021 −0.535034
\(213\) 11.3547 0.778012
\(214\) 5.79021 0.395811
\(215\) 0 0
\(216\) 6.89511 0.469153
\(217\) −7.84407 −0.532490
\(218\) 0.685320 0.0464157
\(219\) −17.3706 −1.17380
\(220\) 0 0
\(221\) 0 0
\(222\) −1.71225 −0.114919
\(223\) 24.8331 1.66295 0.831473 0.555566i \(-0.187498\pi\)
0.831473 + 0.555566i \(0.187498\pi\)
\(224\) −4.38164 −0.292761
\(225\) 0 0
\(226\) −4.00000 −0.266076
\(227\) −21.5266 −1.42877 −0.714384 0.699754i \(-0.753293\pi\)
−0.714384 + 0.699754i \(0.753293\pi\)
\(228\) 2.81714 0.186570
\(229\) 2.63146 0.173892 0.0869459 0.996213i \(-0.472289\pi\)
0.0869459 + 0.996213i \(0.472289\pi\)
\(230\) 0 0
\(231\) 25.3706 1.66927
\(232\) 0.973070 0.0638852
\(233\) 29.0290 1.90175 0.950877 0.309568i \(-0.100184\pi\)
0.950877 + 0.309568i \(0.100184\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0.973070 0.0633415
\(237\) 31.7682 2.06357
\(238\) 25.7122 1.66668
\(239\) −2.13182 −0.137896 −0.0689481 0.997620i \(-0.521964\pi\)
−0.0689481 + 0.997620i \(0.521964\pi\)
\(240\) 0 0
\(241\) −22.4996 −1.44933 −0.724665 0.689102i \(-0.758005\pi\)
−0.724665 + 0.689102i \(0.758005\pi\)
\(242\) −7.00000 −0.449977
\(243\) −9.63429 −0.618040
\(244\) −0.817143 −0.0523122
\(245\) 0 0
\(246\) −13.9461 −0.889173
\(247\) 0 0
\(248\) 1.79021 0.113679
\(249\) −20.1878 −1.27935
\(250\) 0 0
\(251\) −0.419574 −0.0264833 −0.0132416 0.999912i \(-0.504215\pi\)
−0.0132416 + 0.999912i \(0.504215\pi\)
\(252\) −23.5804 −1.48543
\(253\) 15.5804 0.979533
\(254\) −11.7902 −0.739784
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −19.6584 −1.22626 −0.613128 0.789983i \(-0.710089\pi\)
−0.613128 + 0.789983i \(0.710089\pi\)
\(258\) −13.5645 −0.844489
\(259\) 2.59143 0.161024
\(260\) 0 0
\(261\) 5.23672 0.324145
\(262\) −16.9890 −1.04958
\(263\) 10.7633 0.663692 0.331846 0.943333i \(-0.392328\pi\)
0.331846 + 0.943333i \(0.392328\pi\)
\(264\) −5.79021 −0.356363
\(265\) 0 0
\(266\) −4.26365 −0.261421
\(267\) −2.81714 −0.172406
\(268\) 1.79021 0.109355
\(269\) −14.7633 −0.900133 −0.450067 0.892995i \(-0.648600\pi\)
−0.450067 + 0.892995i \(0.648600\pi\)
\(270\) 0 0
\(271\) 27.2388 1.65464 0.827320 0.561731i \(-0.189864\pi\)
0.827320 + 0.561731i \(0.189864\pi\)
\(272\) −5.86818 −0.355810
\(273\) 0 0
\(274\) 4.20979 0.254323
\(275\) 0 0
\(276\) −22.5535 −1.35756
\(277\) 2.87100 0.172502 0.0862509 0.996273i \(-0.472511\pi\)
0.0862509 + 0.996273i \(0.472511\pi\)
\(278\) −6.17185 −0.370163
\(279\) 9.63429 0.576790
\(280\) 0 0
\(281\) −5.39264 −0.321698 −0.160849 0.986979i \(-0.551423\pi\)
−0.160849 + 0.986979i \(0.551423\pi\)
\(282\) 1.10489 0.0657954
\(283\) 24.9511 1.48319 0.741593 0.670850i \(-0.234070\pi\)
0.741593 + 0.670850i \(0.234070\pi\)
\(284\) 3.92204 0.232730
\(285\) 0 0
\(286\) 0 0
\(287\) 21.1070 1.24591
\(288\) 5.38164 0.317116
\(289\) 17.4355 1.02562
\(290\) 0 0
\(291\) −53.8703 −3.15793
\(292\) −6.00000 −0.351123
\(293\) 24.9351 1.45673 0.728363 0.685191i \(-0.240281\pi\)
0.728363 + 0.685191i \(0.240281\pi\)
\(294\) 35.3168 2.05972
\(295\) 0 0
\(296\) −0.591429 −0.0343761
\(297\) −13.7902 −0.800189
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 20.5294 1.18329
\(302\) −15.5025 −0.892066
\(303\) 41.5266 2.38564
\(304\) 0.973070 0.0558094
\(305\) 0 0
\(306\) −31.5804 −1.80533
\(307\) −14.8171 −0.845659 −0.422829 0.906209i \(-0.638963\pi\)
−0.422829 + 0.906209i \(0.638963\pi\)
\(308\) 8.76328 0.499334
\(309\) −28.1878 −1.60355
\(310\) 0 0
\(311\) 12.8710 0.729848 0.364924 0.931037i \(-0.381095\pi\)
0.364924 + 0.931037i \(0.381095\pi\)
\(312\) 0 0
\(313\) −19.9220 −1.12606 −0.563030 0.826436i \(-0.690364\pi\)
−0.563030 + 0.826436i \(0.690364\pi\)
\(314\) −8.97307 −0.506380
\(315\) 0 0
\(316\) 10.9731 0.617283
\(317\) −3.94614 −0.221637 −0.110819 0.993841i \(-0.535347\pi\)
−0.110819 + 0.993841i \(0.535347\pi\)
\(318\) −22.5535 −1.26474
\(319\) −1.94614 −0.108963
\(320\) 0 0
\(321\) 16.7633 0.935635
\(322\) 34.1339 1.90221
\(323\) −5.71015 −0.317721
\(324\) 3.81714 0.212063
\(325\) 0 0
\(326\) −12.6074 −0.698257
\(327\) 1.98407 0.109719
\(328\) −4.81714 −0.265982
\(329\) −1.67222 −0.0921923
\(330\) 0 0
\(331\) −21.4245 −1.17760 −0.588798 0.808280i \(-0.700399\pi\)
−0.588798 + 0.808280i \(0.700399\pi\)
\(332\) −6.97307 −0.382697
\(333\) −3.18286 −0.174420
\(334\) 23.1609 1.26731
\(335\) 0 0
\(336\) −12.6853 −0.692041
\(337\) 11.2388 0.612217 0.306109 0.951997i \(-0.400973\pi\)
0.306109 + 0.951997i \(0.400973\pi\)
\(338\) 0 0
\(339\) −11.5804 −0.628962
\(340\) 0 0
\(341\) −3.58043 −0.193891
\(342\) 5.23672 0.283169
\(343\) −22.7792 −1.22996
\(344\) −4.68532 −0.252616
\(345\) 0 0
\(346\) 19.7902 1.06393
\(347\) 16.9490 0.909868 0.454934 0.890525i \(-0.349663\pi\)
0.454934 + 0.890525i \(0.349663\pi\)
\(348\) 2.81714 0.151015
\(349\) 10.2119 0.546630 0.273315 0.961925i \(-0.411880\pi\)
0.273315 + 0.961925i \(0.411880\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −2.00000 −0.106600
\(353\) −14.9511 −0.795765 −0.397882 0.917436i \(-0.630255\pi\)
−0.397882 + 0.917436i \(0.630255\pi\)
\(354\) 2.81714 0.149729
\(355\) 0 0
\(356\) −0.973070 −0.0515726
\(357\) 74.4397 3.93977
\(358\) 6.17185 0.326193
\(359\) −11.8441 −0.625106 −0.312553 0.949900i \(-0.601184\pi\)
−0.312553 + 0.949900i \(0.601184\pi\)
\(360\) 0 0
\(361\) −18.0531 −0.950165
\(362\) −19.3706 −1.01810
\(363\) −20.2657 −1.06368
\(364\) 0 0
\(365\) 0 0
\(366\) −2.36571 −0.123658
\(367\) −16.0539 −0.838005 −0.419002 0.907985i \(-0.637620\pi\)
−0.419002 + 0.907985i \(0.637620\pi\)
\(368\) −7.79021 −0.406093
\(369\) −25.9241 −1.34956
\(370\) 0 0
\(371\) 34.1339 1.77214
\(372\) 5.18286 0.268719
\(373\) 6.87100 0.355767 0.177883 0.984052i \(-0.443075\pi\)
0.177883 + 0.984052i \(0.443075\pi\)
\(374\) 11.7364 0.606872
\(375\) 0 0
\(376\) 0.381642 0.0196817
\(377\) 0 0
\(378\) −30.2119 −1.55393
\(379\) −1.84407 −0.0947236 −0.0473618 0.998878i \(-0.515081\pi\)
−0.0473618 + 0.998878i \(0.515081\pi\)
\(380\) 0 0
\(381\) −34.1339 −1.74873
\(382\) −3.73635 −0.191168
\(383\) −9.25264 −0.472788 −0.236394 0.971657i \(-0.575966\pi\)
−0.236394 + 0.971657i \(0.575966\pi\)
\(384\) 2.89511 0.147740
\(385\) 0 0
\(386\) 15.3706 0.782345
\(387\) −25.2147 −1.28174
\(388\) −18.6074 −0.944645
\(389\) −21.2686 −1.07836 −0.539180 0.842191i \(-0.681266\pi\)
−0.539180 + 0.842191i \(0.681266\pi\)
\(390\) 0 0
\(391\) 45.7143 2.31187
\(392\) 12.1988 0.616132
\(393\) −49.1850 −2.48105
\(394\) 26.9890 1.35969
\(395\) 0 0
\(396\) −10.7633 −0.540875
\(397\) −33.4727 −1.67995 −0.839974 0.542627i \(-0.817430\pi\)
−0.839974 + 0.542627i \(0.817430\pi\)
\(398\) 23.3168 1.16876
\(399\) −12.3437 −0.617958
\(400\) 0 0
\(401\) −17.7364 −0.885711 −0.442856 0.896593i \(-0.646035\pi\)
−0.442856 + 0.896593i \(0.646035\pi\)
\(402\) 5.18286 0.258497
\(403\) 0 0
\(404\) 14.3437 0.713626
\(405\) 0 0
\(406\) −4.26365 −0.211601
\(407\) 1.18286 0.0586321
\(408\) −16.9890 −0.841081
\(409\) −7.68249 −0.379875 −0.189937 0.981796i \(-0.560829\pi\)
−0.189937 + 0.981796i \(0.560829\pi\)
\(410\) 0 0
\(411\) 12.1878 0.601179
\(412\) −9.73635 −0.479676
\(413\) −4.26365 −0.209800
\(414\) −41.9241 −2.06046
\(415\) 0 0
\(416\) 0 0
\(417\) −17.8682 −0.875008
\(418\) −1.94614 −0.0951889
\(419\) 11.8061 0.576768 0.288384 0.957515i \(-0.406882\pi\)
0.288384 + 0.957515i \(0.406882\pi\)
\(420\) 0 0
\(421\) 26.3678 1.28509 0.642544 0.766249i \(-0.277879\pi\)
0.642544 + 0.766249i \(0.277879\pi\)
\(422\) 15.3547 0.747456
\(423\) 2.05386 0.0998620
\(424\) −7.79021 −0.378326
\(425\) 0 0
\(426\) 11.3547 0.550138
\(427\) 3.58043 0.173269
\(428\) 5.79021 0.279881
\(429\) 0 0
\(430\) 0 0
\(431\) −1.71225 −0.0824761 −0.0412381 0.999149i \(-0.513130\pi\)
−0.0412381 + 0.999149i \(0.513130\pi\)
\(432\) 6.89511 0.331741
\(433\) 11.9220 0.572936 0.286468 0.958090i \(-0.407519\pi\)
0.286468 + 0.958090i \(0.407519\pi\)
\(434\) −7.84407 −0.376528
\(435\) 0 0
\(436\) 0.685320 0.0328209
\(437\) −7.58043 −0.362621
\(438\) −17.3706 −0.830001
\(439\) −12.3437 −0.589133 −0.294567 0.955631i \(-0.595175\pi\)
−0.294567 + 0.955631i \(0.595175\pi\)
\(440\) 0 0
\(441\) 65.6495 3.12617
\(442\) 0 0
\(443\) 28.1580 1.33783 0.668914 0.743340i \(-0.266759\pi\)
0.668914 + 0.743340i \(0.266759\pi\)
\(444\) −1.71225 −0.0812597
\(445\) 0 0
\(446\) 24.8331 1.17588
\(447\) 0 0
\(448\) −4.38164 −0.207013
\(449\) 29.0531 1.37110 0.685551 0.728025i \(-0.259561\pi\)
0.685551 + 0.728025i \(0.259561\pi\)
\(450\) 0 0
\(451\) 9.63429 0.453661
\(452\) −4.00000 −0.188144
\(453\) −44.8813 −2.10871
\(454\) −21.5266 −1.01029
\(455\) 0 0
\(456\) 2.81714 0.131925
\(457\) −11.5266 −0.539190 −0.269595 0.962974i \(-0.586890\pi\)
−0.269595 + 0.962974i \(0.586890\pi\)
\(458\) 2.63146 0.122960
\(459\) −40.4617 −1.88859
\(460\) 0 0
\(461\) −28.4217 −1.32373 −0.661865 0.749623i \(-0.730235\pi\)
−0.661865 + 0.749623i \(0.730235\pi\)
\(462\) 25.3706 1.18035
\(463\) −27.4727 −1.27677 −0.638383 0.769719i \(-0.720396\pi\)
−0.638383 + 0.769719i \(0.720396\pi\)
\(464\) 0.973070 0.0451737
\(465\) 0 0
\(466\) 29.0290 1.34474
\(467\) 18.2098 0.842648 0.421324 0.906910i \(-0.361565\pi\)
0.421324 + 0.906910i \(0.361565\pi\)
\(468\) 0 0
\(469\) −7.84407 −0.362206
\(470\) 0 0
\(471\) −25.9780 −1.19700
\(472\) 0.973070 0.0447892
\(473\) 9.37064 0.430862
\(474\) 31.7682 1.45916
\(475\) 0 0
\(476\) 25.7122 1.17852
\(477\) −41.9241 −1.91957
\(478\) −2.13182 −0.0975073
\(479\) 33.6045 1.53543 0.767715 0.640791i \(-0.221394\pi\)
0.767715 + 0.640791i \(0.221394\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −22.4996 −1.02483
\(483\) 98.8213 4.49653
\(484\) −7.00000 −0.318182
\(485\) 0 0
\(486\) −9.63429 −0.437020
\(487\) 8.00000 0.362515 0.181257 0.983436i \(-0.441983\pi\)
0.181257 + 0.983436i \(0.441983\pi\)
\(488\) −0.817143 −0.0369903
\(489\) −36.4996 −1.65057
\(490\) 0 0
\(491\) −19.8061 −0.893839 −0.446919 0.894574i \(-0.647479\pi\)
−0.446919 + 0.894574i \(0.647479\pi\)
\(492\) −13.9461 −0.628741
\(493\) −5.71015 −0.257172
\(494\) 0 0
\(495\) 0 0
\(496\) 1.79021 0.0803829
\(497\) −17.1850 −0.770851
\(498\) −20.1878 −0.904636
\(499\) −9.12900 −0.408670 −0.204335 0.978901i \(-0.565503\pi\)
−0.204335 + 0.978901i \(0.565503\pi\)
\(500\) 0 0
\(501\) 67.0531 2.99571
\(502\) −0.419574 −0.0187265
\(503\) −10.6074 −0.472959 −0.236479 0.971637i \(-0.575994\pi\)
−0.236479 + 0.971637i \(0.575994\pi\)
\(504\) −23.5804 −1.05036
\(505\) 0 0
\(506\) 15.5804 0.692634
\(507\) 0 0
\(508\) −11.7902 −0.523106
\(509\) 5.63429 0.249735 0.124868 0.992173i \(-0.460149\pi\)
0.124868 + 0.992173i \(0.460149\pi\)
\(510\) 0 0
\(511\) 26.2899 1.16299
\(512\) 1.00000 0.0441942
\(513\) 6.70942 0.296228
\(514\) −19.6584 −0.867094
\(515\) 0 0
\(516\) −13.5645 −0.597144
\(517\) −0.763283 −0.0335692
\(518\) 2.59143 0.113861
\(519\) 57.2948 2.51496
\(520\) 0 0
\(521\) −22.8012 −0.998939 −0.499470 0.866331i \(-0.666472\pi\)
−0.499470 + 0.866331i \(0.666472\pi\)
\(522\) 5.23672 0.229205
\(523\) −23.6286 −1.03321 −0.516604 0.856224i \(-0.672804\pi\)
−0.516604 + 0.856224i \(0.672804\pi\)
\(524\) −16.9890 −0.742168
\(525\) 0 0
\(526\) 10.7633 0.469301
\(527\) −10.5053 −0.457617
\(528\) −5.79021 −0.251987
\(529\) 37.6874 1.63858
\(530\) 0 0
\(531\) 5.23672 0.227254
\(532\) −4.26365 −0.184853
\(533\) 0 0
\(534\) −2.81714 −0.121910
\(535\) 0 0
\(536\) 1.79021 0.0773254
\(537\) 17.8682 0.771069
\(538\) −14.7633 −0.636490
\(539\) −24.3976 −1.05088
\(540\) 0 0
\(541\) −11.3147 −0.486456 −0.243228 0.969969i \(-0.578206\pi\)
−0.243228 + 0.969969i \(0.578206\pi\)
\(542\) 27.2388 1.17001
\(543\) −56.0801 −2.40663
\(544\) −5.86818 −0.251596
\(545\) 0 0
\(546\) 0 0
\(547\) −16.8412 −0.720080 −0.360040 0.932937i \(-0.617237\pi\)
−0.360040 + 0.932937i \(0.617237\pi\)
\(548\) 4.20979 0.179833
\(549\) −4.39757 −0.187684
\(550\) 0 0
\(551\) 0.946866 0.0403379
\(552\) −22.5535 −0.959941
\(553\) −48.0801 −2.04457
\(554\) 2.87100 0.121977
\(555\) 0 0
\(556\) −6.17185 −0.261745
\(557\) −35.7523 −1.51487 −0.757436 0.652909i \(-0.773548\pi\)
−0.757436 + 0.652909i \(0.773548\pi\)
\(558\) 9.63429 0.407852
\(559\) 0 0
\(560\) 0 0
\(561\) 33.9780 1.43455
\(562\) −5.39264 −0.227475
\(563\) 13.3685 0.563417 0.281708 0.959500i \(-0.409099\pi\)
0.281708 + 0.959500i \(0.409099\pi\)
\(564\) 1.10489 0.0465244
\(565\) 0 0
\(566\) 24.9511 1.04877
\(567\) −16.7254 −0.702399
\(568\) 3.92204 0.164565
\(569\) −29.9621 −1.25608 −0.628038 0.778183i \(-0.716142\pi\)
−0.628038 + 0.778183i \(0.716142\pi\)
\(570\) 0 0
\(571\) 30.5156 1.27704 0.638518 0.769607i \(-0.279548\pi\)
0.638518 + 0.769607i \(0.279548\pi\)
\(572\) 0 0
\(573\) −10.8171 −0.451893
\(574\) 21.1070 0.880989
\(575\) 0 0
\(576\) 5.38164 0.224235
\(577\) 33.1609 1.38050 0.690252 0.723569i \(-0.257500\pi\)
0.690252 + 0.723569i \(0.257500\pi\)
\(578\) 17.4355 0.725221
\(579\) 44.4996 1.84934
\(580\) 0 0
\(581\) 30.5535 1.26757
\(582\) −53.8703 −2.23299
\(583\) 15.5804 0.645275
\(584\) −6.00000 −0.248282
\(585\) 0 0
\(586\) 24.9351 1.03006
\(587\) 14.1339 0.583369 0.291685 0.956515i \(-0.405784\pi\)
0.291685 + 0.956515i \(0.405784\pi\)
\(588\) 35.3168 1.45644
\(589\) 1.74200 0.0717780
\(590\) 0 0
\(591\) 78.1360 3.21409
\(592\) −0.591429 −0.0243076
\(593\) −9.39264 −0.385710 −0.192855 0.981227i \(-0.561775\pi\)
−0.192855 + 0.981227i \(0.561775\pi\)
\(594\) −13.7902 −0.565819
\(595\) 0 0
\(596\) 0 0
\(597\) 67.5046 2.76278
\(598\) 0 0
\(599\) 45.5584 1.86147 0.930733 0.365699i \(-0.119170\pi\)
0.930733 + 0.365699i \(0.119170\pi\)
\(600\) 0 0
\(601\) 26.7254 1.09015 0.545075 0.838387i \(-0.316501\pi\)
0.545075 + 0.838387i \(0.316501\pi\)
\(602\) 20.5294 0.836716
\(603\) 9.63429 0.392338
\(604\) −15.5025 −0.630786
\(605\) 0 0
\(606\) 41.5266 1.68690
\(607\) 30.0801 1.22091 0.610456 0.792050i \(-0.290986\pi\)
0.610456 + 0.792050i \(0.290986\pi\)
\(608\) 0.973070 0.0394632
\(609\) −12.3437 −0.500192
\(610\) 0 0
\(611\) 0 0
\(612\) −31.5804 −1.27656
\(613\) −17.2686 −0.697471 −0.348735 0.937221i \(-0.613389\pi\)
−0.348735 + 0.937221i \(0.613389\pi\)
\(614\) −14.8171 −0.597971
\(615\) 0 0
\(616\) 8.76328 0.353083
\(617\) −14.3437 −0.577456 −0.288728 0.957411i \(-0.593232\pi\)
−0.288728 + 0.957411i \(0.593232\pi\)
\(618\) −28.1878 −1.13388
\(619\) 38.4514 1.54549 0.772747 0.634715i \(-0.218882\pi\)
0.772747 + 0.634715i \(0.218882\pi\)
\(620\) 0 0
\(621\) −53.7143 −2.15548
\(622\) 12.8710 0.516080
\(623\) 4.26365 0.170819
\(624\) 0 0
\(625\) 0 0
\(626\) −19.9220 −0.796245
\(627\) −5.63429 −0.225012
\(628\) −8.97307 −0.358064
\(629\) 3.47061 0.138382
\(630\) 0 0
\(631\) 8.18568 0.325867 0.162933 0.986637i \(-0.447904\pi\)
0.162933 + 0.986637i \(0.447904\pi\)
\(632\) 10.9731 0.436485
\(633\) 44.4535 1.76687
\(634\) −3.94614 −0.156721
\(635\) 0 0
\(636\) −22.5535 −0.894304
\(637\) 0 0
\(638\) −1.94614 −0.0770485
\(639\) 21.1070 0.834980
\(640\) 0 0
\(641\) −12.3657 −0.488416 −0.244208 0.969723i \(-0.578528\pi\)
−0.244208 + 0.969723i \(0.578528\pi\)
\(642\) 16.7633 0.661594
\(643\) −46.8972 −1.84945 −0.924723 0.380642i \(-0.875703\pi\)
−0.924723 + 0.380642i \(0.875703\pi\)
\(644\) 34.1339 1.34506
\(645\) 0 0
\(646\) −5.71015 −0.224663
\(647\) 26.1878 1.02955 0.514774 0.857326i \(-0.327876\pi\)
0.514774 + 0.857326i \(0.327876\pi\)
\(648\) 3.81714 0.149952
\(649\) −1.94614 −0.0763927
\(650\) 0 0
\(651\) −22.7094 −0.890053
\(652\) −12.6074 −0.493742
\(653\) 10.7633 0.421200 0.210600 0.977572i \(-0.432458\pi\)
0.210600 + 0.977572i \(0.432458\pi\)
\(654\) 1.98407 0.0775834
\(655\) 0 0
\(656\) −4.81714 −0.188078
\(657\) −32.2899 −1.25975
\(658\) −1.67222 −0.0651898
\(659\) 31.4727 1.22600 0.613001 0.790082i \(-0.289962\pi\)
0.613001 + 0.790082i \(0.289962\pi\)
\(660\) 0 0
\(661\) −25.2147 −0.980739 −0.490369 0.871515i \(-0.663138\pi\)
−0.490369 + 0.871515i \(0.663138\pi\)
\(662\) −21.4245 −0.832687
\(663\) 0 0
\(664\) −6.97307 −0.270608
\(665\) 0 0
\(666\) −3.18286 −0.123333
\(667\) −7.58043 −0.293515
\(668\) 23.1609 0.896120
\(669\) 71.8944 2.77960
\(670\) 0 0
\(671\) 1.63429 0.0630909
\(672\) −12.6853 −0.489347
\(673\) −23.2388 −0.895791 −0.447895 0.894086i \(-0.647826\pi\)
−0.447895 + 0.894086i \(0.647826\pi\)
\(674\) 11.2388 0.432903
\(675\) 0 0
\(676\) 0 0
\(677\) 47.2629 1.81646 0.908231 0.418470i \(-0.137433\pi\)
0.908231 + 0.418470i \(0.137433\pi\)
\(678\) −11.5804 −0.444744
\(679\) 81.5308 3.12886
\(680\) 0 0
\(681\) −62.3217 −2.38817
\(682\) −3.58043 −0.137102
\(683\) −6.97307 −0.266817 −0.133409 0.991061i \(-0.542592\pi\)
−0.133409 + 0.991061i \(0.542592\pi\)
\(684\) 5.23672 0.200231
\(685\) 0 0
\(686\) −22.7792 −0.869714
\(687\) 7.61836 0.290658
\(688\) −4.68532 −0.178626
\(689\) 0 0
\(690\) 0 0
\(691\) 32.2899 1.22836 0.614182 0.789164i \(-0.289486\pi\)
0.614182 + 0.789164i \(0.289486\pi\)
\(692\) 19.7902 0.752311
\(693\) 47.1609 1.79149
\(694\) 16.9490 0.643374
\(695\) 0 0
\(696\) 2.81714 0.106784
\(697\) 28.2678 1.07072
\(698\) 10.2119 0.386526
\(699\) 84.0421 3.17877
\(700\) 0 0
\(701\) −0.521643 −0.0197022 −0.00985109 0.999951i \(-0.503136\pi\)
−0.00985109 + 0.999951i \(0.503136\pi\)
\(702\) 0 0
\(703\) −0.575502 −0.0217055
\(704\) −2.00000 −0.0753778
\(705\) 0 0
\(706\) −14.9511 −0.562691
\(707\) −62.8490 −2.36368
\(708\) 2.81714 0.105875
\(709\) 33.2147 1.24740 0.623702 0.781662i \(-0.285628\pi\)
0.623702 + 0.781662i \(0.285628\pi\)
\(710\) 0 0
\(711\) 59.0531 2.21467
\(712\) −0.973070 −0.0364674
\(713\) −13.9461 −0.522287
\(714\) 74.4397 2.78584
\(715\) 0 0
\(716\) 6.17185 0.230653
\(717\) −6.17185 −0.230492
\(718\) −11.8441 −0.442017
\(719\) −4.26365 −0.159007 −0.0795036 0.996835i \(-0.525334\pi\)
−0.0795036 + 0.996835i \(0.525334\pi\)
\(720\) 0 0
\(721\) 42.6612 1.58879
\(722\) −18.0531 −0.671868
\(723\) −65.1388 −2.42254
\(724\) −19.3706 −0.719904
\(725\) 0 0
\(726\) −20.2657 −0.752132
\(727\) −47.5266 −1.76266 −0.881331 0.472499i \(-0.843352\pi\)
−0.881331 + 0.472499i \(0.843352\pi\)
\(728\) 0 0
\(729\) −39.3437 −1.45717
\(730\) 0 0
\(731\) 27.4943 1.01691
\(732\) −2.36571 −0.0874393
\(733\) 44.8593 1.65692 0.828458 0.560052i \(-0.189219\pi\)
0.828458 + 0.560052i \(0.189219\pi\)
\(734\) −16.0539 −0.592559
\(735\) 0 0
\(736\) −7.79021 −0.287151
\(737\) −3.58043 −0.131887
\(738\) −25.9241 −0.954281
\(739\) 18.4514 0.678747 0.339373 0.940652i \(-0.389785\pi\)
0.339373 + 0.940652i \(0.389785\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 34.1339 1.25310
\(743\) −14.2201 −0.521684 −0.260842 0.965382i \(-0.584000\pi\)
−0.260842 + 0.965382i \(0.584000\pi\)
\(744\) 5.18286 0.190013
\(745\) 0 0
\(746\) 6.87100 0.251565
\(747\) −37.5266 −1.37303
\(748\) 11.7364 0.429124
\(749\) −25.3706 −0.927023
\(750\) 0 0
\(751\) −28.7951 −1.05075 −0.525375 0.850871i \(-0.676075\pi\)
−0.525375 + 0.850871i \(0.676075\pi\)
\(752\) 0.381642 0.0139170
\(753\) −1.21471 −0.0442665
\(754\) 0 0
\(755\) 0 0
\(756\) −30.2119 −1.09880
\(757\) −13.7364 −0.499256 −0.249628 0.968342i \(-0.580308\pi\)
−0.249628 + 0.968342i \(0.580308\pi\)
\(758\) −1.84407 −0.0669797
\(759\) 45.1070 1.63728
\(760\) 0 0
\(761\) −5.39264 −0.195483 −0.0977416 0.995212i \(-0.531162\pi\)
−0.0977416 + 0.995212i \(0.531162\pi\)
\(762\) −34.1339 −1.23654
\(763\) −3.00282 −0.108710
\(764\) −3.73635 −0.135177
\(765\) 0 0
\(766\) −9.25264 −0.334312
\(767\) 0 0
\(768\) 2.89511 0.104468
\(769\) 2.34371 0.0845163 0.0422582 0.999107i \(-0.486545\pi\)
0.0422582 + 0.999107i \(0.486545\pi\)
\(770\) 0 0
\(771\) −56.9131 −2.04968
\(772\) 15.3706 0.553201
\(773\) −29.3547 −1.05582 −0.527908 0.849302i \(-0.677023\pi\)
−0.527908 + 0.849302i \(0.677023\pi\)
\(774\) −25.2147 −0.906324
\(775\) 0 0
\(776\) −18.6074 −0.667965
\(777\) 7.50246 0.269149
\(778\) −21.2686 −0.762515
\(779\) −4.68742 −0.167944
\(780\) 0 0
\(781\) −7.84407 −0.280683
\(782\) 45.7143 1.63474
\(783\) 6.70942 0.239775
\(784\) 12.1988 0.435671
\(785\) 0 0
\(786\) −49.1850 −1.75437
\(787\) 34.6336 1.23455 0.617277 0.786746i \(-0.288236\pi\)
0.617277 + 0.786746i \(0.288236\pi\)
\(788\) 26.9890 0.961443
\(789\) 31.1609 1.10936
\(790\) 0 0
\(791\) 17.5266 0.623173
\(792\) −10.7633 −0.382457
\(793\) 0 0
\(794\) −33.4727 −1.18790
\(795\) 0 0
\(796\) 23.3168 0.826441
\(797\) −27.8221 −0.985508 −0.492754 0.870169i \(-0.664010\pi\)
−0.492754 + 0.870169i \(0.664010\pi\)
\(798\) −12.3437 −0.436963
\(799\) −2.23954 −0.0792293
\(800\) 0 0
\(801\) −5.23672 −0.185030
\(802\) −17.7364 −0.626292
\(803\) 12.0000 0.423471
\(804\) 5.18286 0.182785
\(805\) 0 0
\(806\) 0 0
\(807\) −42.7413 −1.50456
\(808\) 14.3437 0.504610
\(809\) −23.1768 −0.814852 −0.407426 0.913238i \(-0.633574\pi\)
−0.407426 + 0.913238i \(0.633574\pi\)
\(810\) 0 0
\(811\) −36.0857 −1.26714 −0.633570 0.773685i \(-0.718411\pi\)
−0.633570 + 0.773685i \(0.718411\pi\)
\(812\) −4.26365 −0.149625
\(813\) 78.8593 2.76572
\(814\) 1.18286 0.0414591
\(815\) 0 0
\(816\) −16.9890 −0.594734
\(817\) −4.55915 −0.159504
\(818\) −7.68249 −0.268612
\(819\) 0 0
\(820\) 0 0
\(821\) −38.3196 −1.33736 −0.668682 0.743549i \(-0.733141\pi\)
−0.668682 + 0.743549i \(0.733141\pi\)
\(822\) 12.1878 0.425098
\(823\) −53.3486 −1.85962 −0.929808 0.368044i \(-0.880027\pi\)
−0.929808 + 0.368044i \(0.880027\pi\)
\(824\) −9.73635 −0.339182
\(825\) 0 0
\(826\) −4.26365 −0.148351
\(827\) 14.5053 0.504398 0.252199 0.967675i \(-0.418846\pi\)
0.252199 + 0.967675i \(0.418846\pi\)
\(828\) −41.9241 −1.45696
\(829\) −13.3926 −0.465146 −0.232573 0.972579i \(-0.574714\pi\)
−0.232573 + 0.972579i \(0.574714\pi\)
\(830\) 0 0
\(831\) 8.31186 0.288335
\(832\) 0 0
\(833\) −71.5846 −2.48026
\(834\) −17.8682 −0.618724
\(835\) 0 0
\(836\) −1.94614 −0.0673087
\(837\) 12.3437 0.426661
\(838\) 11.8061 0.407836
\(839\) −2.52164 −0.0870568 −0.0435284 0.999052i \(-0.513860\pi\)
−0.0435284 + 0.999052i \(0.513860\pi\)
\(840\) 0 0
\(841\) −28.0531 −0.967349
\(842\) 26.3678 0.908695
\(843\) −15.6123 −0.537715
\(844\) 15.3547 0.528531
\(845\) 0 0
\(846\) 2.05386 0.0706131
\(847\) 30.6715 1.05388
\(848\) −7.79021 −0.267517
\(849\) 72.2360 2.47913
\(850\) 0 0
\(851\) 4.60736 0.157938
\(852\) 11.3547 0.389006
\(853\) 36.4078 1.24658 0.623290 0.781990i \(-0.285795\pi\)
0.623290 + 0.781990i \(0.285795\pi\)
\(854\) 3.58043 0.122520
\(855\) 0 0
\(856\) 5.79021 0.197905
\(857\) −21.4188 −0.731654 −0.365827 0.930683i \(-0.619214\pi\)
−0.365827 + 0.930683i \(0.619214\pi\)
\(858\) 0 0
\(859\) −41.9461 −1.43118 −0.715592 0.698519i \(-0.753843\pi\)
−0.715592 + 0.698519i \(0.753843\pi\)
\(860\) 0 0
\(861\) 61.1070 2.08252
\(862\) −1.71225 −0.0583194
\(863\) 38.3278 1.30469 0.652346 0.757921i \(-0.273785\pi\)
0.652346 + 0.757921i \(0.273785\pi\)
\(864\) 6.89511 0.234576
\(865\) 0 0
\(866\) 11.9220 0.405127
\(867\) 50.4776 1.71431
\(868\) −7.84407 −0.266245
\(869\) −21.9461 −0.744472
\(870\) 0 0
\(871\) 0 0
\(872\) 0.685320 0.0232078
\(873\) −100.138 −3.38916
\(874\) −7.58043 −0.256412
\(875\) 0 0
\(876\) −17.3706 −0.586900
\(877\) −43.3327 −1.46324 −0.731621 0.681712i \(-0.761236\pi\)
−0.731621 + 0.681712i \(0.761236\pi\)
\(878\) −12.3437 −0.416580
\(879\) 72.1899 2.43490
\(880\) 0 0
\(881\) 1.09107 0.0367590 0.0183795 0.999831i \(-0.494149\pi\)
0.0183795 + 0.999831i \(0.494149\pi\)
\(882\) 65.6495 2.21053
\(883\) −28.3735 −0.954843 −0.477422 0.878674i \(-0.658429\pi\)
−0.477422 + 0.878674i \(0.658429\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 28.1580 0.945987
\(887\) −4.50529 −0.151273 −0.0756364 0.997135i \(-0.524099\pi\)
−0.0756364 + 0.997135i \(0.524099\pi\)
\(888\) −1.71225 −0.0574593
\(889\) 51.6605 1.73264
\(890\) 0 0
\(891\) −7.63429 −0.255758
\(892\) 24.8331 0.831473
\(893\) 0.371364 0.0124272
\(894\) 0 0
\(895\) 0 0
\(896\) −4.38164 −0.146380
\(897\) 0 0
\(898\) 29.0531 0.969516
\(899\) 1.74200 0.0580991
\(900\) 0 0
\(901\) 45.7143 1.52297
\(902\) 9.63429 0.320787
\(903\) 59.4348 1.97787
\(904\) −4.00000 −0.133038
\(905\) 0 0
\(906\) −44.8813 −1.49108
\(907\) 48.0503 1.59548 0.797742 0.602999i \(-0.206028\pi\)
0.797742 + 0.602999i \(0.206028\pi\)
\(908\) −21.5266 −0.714384
\(909\) 77.1927 2.56032
\(910\) 0 0
\(911\) 12.5755 0.416645 0.208322 0.978060i \(-0.433200\pi\)
0.208322 + 0.978060i \(0.433200\pi\)
\(912\) 2.81714 0.0932849
\(913\) 13.9461 0.461550
\(914\) −11.5266 −0.381265
\(915\) 0 0
\(916\) 2.63146 0.0869459
\(917\) 74.4397 2.45822
\(918\) −40.4617 −1.33544
\(919\) 23.6881 0.781400 0.390700 0.920518i \(-0.372233\pi\)
0.390700 + 0.920518i \(0.372233\pi\)
\(920\) 0 0
\(921\) −42.8972 −1.41351
\(922\) −28.4217 −0.936018
\(923\) 0 0
\(924\) 25.3706 0.834633
\(925\) 0 0
\(926\) −27.4727 −0.902809
\(927\) −52.3976 −1.72096
\(928\) 0.973070 0.0319426
\(929\) −45.0850 −1.47919 −0.739595 0.673052i \(-0.764983\pi\)
−0.739595 + 0.673052i \(0.764983\pi\)
\(930\) 0 0
\(931\) 11.8703 0.389033
\(932\) 29.0290 0.950877
\(933\) 37.2629 1.21993
\(934\) 18.2098 0.595842
\(935\) 0 0
\(936\) 0 0
\(937\) −28.7951 −0.940696 −0.470348 0.882481i \(-0.655872\pi\)
−0.470348 + 0.882481i \(0.655872\pi\)
\(938\) −7.84407 −0.256118
\(939\) −57.6764 −1.88220
\(940\) 0 0
\(941\) 2.84690 0.0928062 0.0464031 0.998923i \(-0.485224\pi\)
0.0464031 + 0.998923i \(0.485224\pi\)
\(942\) −25.9780 −0.846409
\(943\) 37.5266 1.22203
\(944\) 0.973070 0.0316707
\(945\) 0 0
\(946\) 9.37064 0.304666
\(947\) 11.3168 0.367746 0.183873 0.982950i \(-0.441136\pi\)
0.183873 + 0.982950i \(0.441136\pi\)
\(948\) 31.7682 1.03178
\(949\) 0 0
\(950\) 0 0
\(951\) −11.4245 −0.370465
\(952\) 25.7122 0.833339
\(953\) 28.4535 0.921700 0.460850 0.887478i \(-0.347545\pi\)
0.460850 + 0.887478i \(0.347545\pi\)
\(954\) −41.9241 −1.35734
\(955\) 0 0
\(956\) −2.13182 −0.0689481
\(957\) −5.63429 −0.182131
\(958\) 33.6045 1.08571
\(959\) −18.4458 −0.595645
\(960\) 0 0
\(961\) −27.7951 −0.896617
\(962\) 0 0
\(963\) 31.1609 1.00414
\(964\) −22.4996 −0.724665
\(965\) 0 0
\(966\) 98.8213 3.17952
\(967\) −1.48863 −0.0478713 −0.0239356 0.999714i \(-0.507620\pi\)
−0.0239356 + 0.999714i \(0.507620\pi\)
\(968\) −7.00000 −0.224989
\(969\) −16.5315 −0.531068
\(970\) 0 0
\(971\) 49.6446 1.59317 0.796585 0.604527i \(-0.206638\pi\)
0.796585 + 0.604527i \(0.206638\pi\)
\(972\) −9.63429 −0.309020
\(973\) 27.0429 0.866954
\(974\) 8.00000 0.256337
\(975\) 0 0
\(976\) −0.817143 −0.0261561
\(977\) −39.6066 −1.26713 −0.633564 0.773690i \(-0.718409\pi\)
−0.633564 + 0.773690i \(0.718409\pi\)
\(978\) −36.4996 −1.16713
\(979\) 1.94614 0.0621989
\(980\) 0 0
\(981\) 3.68814 0.117753
\(982\) −19.8061 −0.632039
\(983\) −0.725351 −0.0231351 −0.0115676 0.999933i \(-0.503682\pi\)
−0.0115676 + 0.999933i \(0.503682\pi\)
\(984\) −13.9461 −0.444587
\(985\) 0 0
\(986\) −5.71015 −0.181848
\(987\) −4.84125 −0.154099
\(988\) 0 0
\(989\) 36.4996 1.16062
\(990\) 0 0
\(991\) −35.5046 −1.12784 −0.563920 0.825830i \(-0.690707\pi\)
−0.563920 + 0.825830i \(0.690707\pi\)
\(992\) 1.79021 0.0568393
\(993\) −62.0262 −1.96834
\(994\) −17.1850 −0.545074
\(995\) 0 0
\(996\) −20.1878 −0.639674
\(997\) −10.4196 −0.329991 −0.164996 0.986294i \(-0.552761\pi\)
−0.164996 + 0.986294i \(0.552761\pi\)
\(998\) −9.12900 −0.288973
\(999\) −4.07796 −0.129021
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8450.2.a.cc.1.3 3
5.2 odd 4 1690.2.b.a.339.4 6
5.3 odd 4 1690.2.b.a.339.3 6
5.4 even 2 8450.2.a.bs.1.1 3
13.12 even 2 650.2.a.n.1.3 3
39.38 odd 2 5850.2.a.cs.1.3 3
52.51 odd 2 5200.2.a.ce.1.1 3
65.8 even 4 1690.2.c.d.1689.6 6
65.12 odd 4 130.2.b.a.79.1 6
65.18 even 4 1690.2.c.a.1689.6 6
65.38 odd 4 130.2.b.a.79.6 yes 6
65.47 even 4 1690.2.c.a.1689.1 6
65.57 even 4 1690.2.c.d.1689.1 6
65.64 even 2 650.2.a.o.1.1 3
195.38 even 4 1170.2.e.f.469.1 6
195.77 even 4 1170.2.e.f.469.4 6
195.194 odd 2 5850.2.a.cp.1.1 3
260.103 even 4 1040.2.d.b.209.1 6
260.207 even 4 1040.2.d.b.209.6 6
260.259 odd 2 5200.2.a.cf.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.b.a.79.1 6 65.12 odd 4
130.2.b.a.79.6 yes 6 65.38 odd 4
650.2.a.n.1.3 3 13.12 even 2
650.2.a.o.1.1 3 65.64 even 2
1040.2.d.b.209.1 6 260.103 even 4
1040.2.d.b.209.6 6 260.207 even 4
1170.2.e.f.469.1 6 195.38 even 4
1170.2.e.f.469.4 6 195.77 even 4
1690.2.b.a.339.3 6 5.3 odd 4
1690.2.b.a.339.4 6 5.2 odd 4
1690.2.c.a.1689.1 6 65.47 even 4
1690.2.c.a.1689.6 6 65.18 even 4
1690.2.c.d.1689.1 6 65.57 even 4
1690.2.c.d.1689.6 6 65.8 even 4
5200.2.a.ce.1.1 3 52.51 odd 2
5200.2.a.cf.1.3 3 260.259 odd 2
5850.2.a.cp.1.1 3 195.194 odd 2
5850.2.a.cs.1.3 3 39.38 odd 2
8450.2.a.bs.1.1 3 5.4 even 2
8450.2.a.cc.1.3 3 1.1 even 1 trivial